Supplementary Information

Experimental and theoretical insights into magnetic exchange and anisotropy in multinuclear cobalt complexes displaying slow relaxation

Narayan Ch. Jana,^a Erik Čižmár,^b Paula Brandão,^c Kuheli Pramanik,^{a,d} Anangamohan Panja,^{a,d,*}

 ^a Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India, India. E-mail: ampanja@yahoo.co.in
 ^b Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Park Angelinum 9, SK-041 54 Košice, Slovakia.

^c Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

^d Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020

Fig. S1. PXRD data of complex 1.

Fig. S2. PXRD data of complex 2.

Fig. S3. PXRD data of complex 3.

Fig. S4. A part of the crystal packing in 1 showing the complex cation surrounded by six helical pillars of nitrate counter ions.

Fig. S5. Crystal packing in complex 1 showing different non-covalent interactions.

Fig. S6. Crystal packing in complex 2 showing different non-covalent interactions.

Fig. S7. Crystal packing in complex 3 showing different non-covalent interactions.

Fig. S8. Energies of ligand field terms and the lowest six multiplets of **1** obtained from SA-CASSCF/NEVPT2 calculations.

Fig. S9. Energies of ligand field terms (lower panel) and the lowest six multiplets (upper panel) of **2** obtained from SA-CASSCF/NEVPT2 calculations.

Fig. S10. Energies of ligand field terms and the lowest six multiplets of **3** obtained from SA-CASSCF/NEVPT2 calculations.

Fig S11. The orientation of the *D*-tensor axis frame of outer Co^{II} ions in 1, 2, and 3 (panels a, b, and c) resulting from SA-CASSCF/NEVPT2 calculations done in ORCA for 1 is shown by arrows. The color coding is red $-D_x$, green $-D_y$, and blue $-D_z$. Plotted using VESTA software. In the case of the central Co1 ion in 1, the axis frame of the g-tensor of the ground state Kramers doublet is shown with the following color coding: wine red $-g_x$, olive green $-g_y$, and navy blue $-g_z$.

Fig S12. Temperature dependence of susceptibility of 1, 2, and 3 measured in an applied field of 1 kOe.

Fig S13. Field dependence of magnetization of 1 (a), 2 (b), and 3 (c) in reduced units measures at different temperatures.

Fig S14. Temperature dependence of χT for each Co^{II} ion in the molecular unit of 2 (a) and 1 (b) as obtained from CAS(7,5) SA-CASSCF/NEVPT2 approach.

Fig S15. Frequency dependence of real and imaginary components of AC susceptibility of 1 obtained in zero DC magnetic field at different temperatures (open symbols), solid lines represent the fit of the generalized Debye model.

Fig S16. Cole-Cole plots of **1** obtained in zero DC magnetic field at different temperatures (open symbols), solid lines represent the fit of the generalized Debye model.

Fig S17. Frequency dependence of real and imaginary components of AC susceptibility of 2 obtained in zero DC magnetic field at different temperatures (open symbols), solid lines represent the fit of the generalized Debye model.

Identification code	1	2	3	Schiff base H_2L
Empirical formula	$C_{96}H_{90}Co_7N_8O_{24}$	$C_{64}H_{71}Co_4N_4O_{17.5}$	$C_{66.5}H_{63.5}N_6O_{14}S_2Co_4$	$C_{32}H_{34}N_2O_6$
Formula weight	2152.26	1411.96	1470.57	542.61
Temperature/K	150.05	150.00	150.00	100.02(10)
Crystal system	trigonal	monoclinic	monoclinic	monoclinic
Space group	R ³	$P2_1/n$	$P2_1/n$	$P2_1/n$
a/Å	27.8412(8)	15.2081(19)	10.281(7)	13.3196(12)
b/Å	27.8412(8)	24.307(2)	16.080(11)	7.1596(6)
c/Å	10.6569(2)	17.027(2)	20.016(13)	28.319(2)
α/°	90	90	90	90
β/°	90	90.524(4)	92.053(17)	95.339(8)
γ/°	120	90	90	90
Volume/Å ³	7153.8(4)	6294.1(12)	3307(4)	2688.9(4)
Z	3	4	2	4
$\rho_{calc}g/cm^3$	1.499	1.490	1.477	1.340
µ/mm ⁻¹	1.265	1.110	1.118	0.093
F(000)	3309.0	2924.0	1513.0	1152.0
2Θ range for data collection/ ^c	° 5.854 to 50.688	4.924 to 50.81	4.522 to 54.186	3.514 to 59.922
Reflections collected	28952	117475	67508	23623
Independent reflections	2871 [$R_{int} = 0.0420$, $R_{sigma} = 0.0196$]	11560 [R _{int} = 0.0638, R _{sigma} = 0.0280]	7282 [$R_{int} = 0.0410$, $R_{sigma} = 0.0224$]	6113 [$R_{int} = 0.0724$, $R_{sigma} = 0.0797$]
Data/restraints/parameters	2871/48/230	11560/2/831	7282/0/433	6113/0/369
Goodness-of-fit on F ²	1.099	1.056	1.082	1.045
Einel D indexes [I>-2- (I)]	$R_1 = 0.0588,$	$R_1 = 0.0447,$	$R_1 = 0.0353,$	$R_1 = 0.0547, wR_2 =$
$\Gamma \text{ indexes } \left[1 - 20 \left(1\right)\right]$	$wR_2 = 0.1974$	$wR_2 = 0.1092$	$wR_2 = 0.0799$	0.1302
Final P indexes [all data]	$R_1 = 0.0733,$	$R_1 = 0.0584,$	$R_1 = 0.0518,$	$R_1 = 0.0934, wR_2 =$
i mai ix muexes [an uata]	$wR_2 = 0.2256$	$wR_2 = 0.1191$	$wR_2 = 0.0892$	0.1471
Largest diff. peak/hole / e Å-3	³ 0.77/-0.51	1.65/-1.19	0.61/-0.57	0.30/-0.31

Table S1. Crystal data and structure refinement for complexes 1-3 and Schiff base H_2L .

Bond Distances (in Å)							
	1		2		3		
Co1–O31	2.118(3)	Co2–O10	2.020(2)	Co1–O1	1.9348(17)		
Co1-O3 ²	2.118(3)	Co2–O12	2.126(2)	Co1–O3	1.9117(19)		
Co1–O3 ³	2.118(3)	Со2–О9	2.154(2)	Co1–O4	1.8889(17)		
Co1–O3	2.118(3)	Co2–O3	1.969(2)	Co1–O6	1.8889(18)		
Co1–O3 ⁴	2.118(3)	Co2–O14	2.268(2)	Co1–N1	1.929(2)		
Co1–O3 ⁵	2.118(3)	Co2–N2	2.096(3)	Co1–N2	1.915(2)		
Co2–O1 ⁴	1.992(3)	Co1-O10	2.170(2)	Co2–O1 ⁶	2.118(2)		
Co2–O1	2.039(3)	Co1011	2.129(2)	Co2–O3	2.1934(18)		
Co2–O2	2.381(4)	Co1–O9	2.004(2)	Co2–O3 ⁶	2.1126(18)		
Co2-N1 ⁴	2.075(4)	Co1–O1	1.955(2)	Co2–O6	1.9814(19)		
Co2–O3 ⁴	2.043(3)	Co1O13	2.224(3)	Co2–N3	2.051(2)		
Co2–O3 ⁵	2.186(3)	Co1–N1	2.117(3)	Co2–O7	2.126(2)		
		Co3–O10	2.109(2)				
		Co3–O11	2.009(2)				
		Co3–O12	2.129(2)				
		Co3–O5	1.977(2)				
		Co3–O15	2.400(3)				
		Co3–N3	2.073(3)				
		Co4011	2.147(2)				
		Co4–O12	2.024(2)				
		Co4–O9	2.084(2)				
		Co4–O7	1.995(2)				
		Co4–N4	2.053(3)				
		Co4–O16	2.301(3)				
Bond Angles (in	deg.)						
	1		2		3		
Co2–O1–Co2 ²	104.71(14)	Co2-O10-Co1	100.95(9)	Co1–O1–Co2 ¹	98.62(8)		
Co1–O3–Co2 ¹	92.65(12)	Co2-O10-Co3	97.06(9)	Co1–O3–Co2	96.19(7)		
Co2 ² –O3–Co1	96.85(13)	Co3-O10-Co1	94.63(8)	Co1-O3-Co21	99.56(8)		
Co2 ² –O3–Co2 ¹	97.96(13)	Co1-O11-Co4	92.29(9)	Co21-O3-Co2	99.26(8)		
		Co3-O11-Co1	98.90(9)	Co1-O6-Co2	104.51(8)		
		Co3-O11-Co4	101.32(9)				
		Co2-O12-Co3	93.29(8)				
		Co4-O12-Co2	97.45(9)				
		Co4–O12–Co3	101.43(9)				
		Co1O9Co2	102.02(10)				
		Co1–O9–Co4	97.91(10)				
		Co4–O9–Co2	94.79(9)				

 Table S2. Bond distances around metal centers in 1-3.#

symmetry code: ¹1-y,1+x-y,+z; ²2/3-x,4/3-y,1/3-z; ³2/3-y+x,1/3+x,1/3-z; ⁴-1/3+y,1/3-x+y,1/3-z; ⁵+y-x,1-x,+z; ⁶2-x,1-y,1-z

Complex	Bond	R	BVS calculated using Co ^{II–} N/O R ₀ Parameters	BVS calculated using Co ^{III–} N/O R ₂ Parameters
	Co1-O31	2.118(3)	0.310283	0.272532
	Co1-O3 ²	2.118(3)	0.310283	0.272532
	Co1-O3 ³	2.118(3)	0.310283	0.272532
	Co1–O3	2.118(3)	0.310283	0.272532
	Co1O34	2.118(3)	0.310283	0.272532
	Co1-O3 ⁵	2.118(3)	0.310283	0.272532
			$\Sigma v(Co^{II}) = 1.862$	$\Sigma v(Co^{III}) = 1.635$
	Co2–O1 ⁴	1.992(3)	0.436167	0.3831
1	Co2O1	2.039(3)	0.384137	0.3374
	Co2–O2	2.381(4)	0.152425	0.13388
	Co2-N14	2.075(4)	0.3831	0.353264
	Co2–O3 ⁴	2.043(3)	0.380006	0.333772
	Co2–O3 ⁵	2.186(3)	0.258191	0.226778
			$\Sigma v(Co^{II}) = 1.994$	$\Sigma v(Co^{III}) = 1.768$
-	Co2O10	2.020(2)	0.404378	0.355178
	Co2012	2.126(2)	0.303646	0.266702
	Co2–O9	2.154(2)	0.281516	0.247264
	Co2–O3	1.969(2)	0.464141	0.40767
	Co2–O14	2.268(2)	0.206868	0.181699
	Co2–N2	2.096(3)	0.361962	0.333772
			$\Sigma v(Co^{II}) = 2.022$	$\Sigma v(Co^{III}) = 1.792$
	Co1O10	2.170(2)	0.269601	0.2368
	Co1011	2.129(2)	0.301194	0.264549
	Co109	2.004(2)	0.422248	0.370874
	Co1–O1	1.955(2)	0.482039	0.423391
	Co1013	2.224(3)	0.34199	0.315356
	Co1–N1	2.117(3)	0.232991	0.204643
			$\Sigma v(Co^{II}) = 2.050$	$\Sigma v(Co^{III}) = 1.815$
	Co3O10	2.109(2)	0.322248	0.279242
	Co3011	2.009(2)	0.422248	0.365896
	Co3O12	2.129(2)	0.305292	0.264549
2	Co3–O5	1.977(2)	0.460393	0.39895
	Co3015	2.400(3)	0.146766	0.127179
	Co3–N3	2.073(3)	0.385176	0.355178
			$\Sigma v(Co^{II}) = 2.042$	$\Sigma v(Co^{III}) = 1.791$
	Co4-011	2.147(2)	0.286892	0.251987
	Co4-O12	2.024(2)	0.40003	0.351359
	<u>Co4–O9</u>	2.084(2)	0.340147	0.298762
	<u>Co4–O'/</u>	1.995(2)	0.432645	0.380006
	Co4-N4	2.053(3)	0.40657	0.166195
	<u>Co4–O16</u>	2.301(3)	0.189216	0.3/4906
	G 1 01	1.0240(17)	$\Sigma V(C0^{-1}) = 2.055$	$\Sigma v(Co^{m}) = 1.823$
	Col-Ol	1.9348(17)	0.509088	0.44/148
	Co1-03	1.911/(19)	0.57(22)	0.475955
	Co1-04	1.8889(17)	0.57(32)	0.506206
	Col-00	1.0009(10)	0.570520	0.500200
	Col N2	1.929(2)	0.500357	0.524100
3		1.713(2)	$\nabla y(Coll) = 2.262$	$\nabla v(C_{0}III) = 2.004$
	Co2 016	2 118(2)	$\frac{27(00^{-}) - 5.502}{0.310283}$	$27(00^{-1}) = 3.004$
	$C_{02} - O_{1^{\circ}}$	2.110(2)	0.253079	0.272352
	$C_{02} - 03$	2.1754(10)	0.235079	0.222207
	$C_{02} = 0.5^{\circ}$	1 081/(10)	0.448843	0.394234
	$C_{02} = 0.0$	2 ()51(2)	0 303646	0.266702
	$C_{02} = 07$	2.031(2)	0.408773	0.376938
		2.120(2)	$\Sigma_{\rm V}(C_0{}^{\rm H}) = 2.039$	$\Sigma_{\rm V}({\rm Co}^{\rm HI}) = 1.809$
L	1			

Table S3. BVS analysis for the cobalt centers in **1–3** using the empirical equation of $\Sigma v = \Sigma \exp[(R_0 - R)/0.37]$, where $r_0 = 1.685$ for Co^{II}–O, 1.720 for Co^{II}–N, 1.637 for Co^{III}–O and 1.690 for Co^{III}–N.

symmetry code: 11-y,1+x-y,+z; 2/3-x,4/3-y,1/3-z; 3/3-y+x,1/3+x,1/3-z; 4-1/3+y,1/3-x+y,1/3-z; 5+y-x,1-x,+z; 6/2-x,1-y,1-z

Label	Shape	Symmetry	1 2			3				
			Col	Co2	Co1	Co2	Co3	Co4	Co1	Co2
HP-6	Hexagon	D _{6h}	25.801	31.610	30.349	30.705	31.295	29.552	32.539	28.355
PPY-6	Pentagonal pyramid	C _{5v}	27.052	17.728	23.715	22.937	24.312	20.907	28.743	26.127
OC-6	Octahedron	Oh	0.682	6.532	1.193	1.474	1.368	2.364	0.194	1.161
TPR-6	Trigonal prism	D _{3h}	16.513	4.426	12.531	12.072	12.553	10.363	15.542	13.851
JPPY-6	Johnson pentagonal pyramid J2	C _{5v}	30.043	21.371	27.072	25.754	27.061	23.699	31.955	28.800

Table S4. Shape analysis for Co^{II} or Co^{II} centers in 1-3.

Table S5 Assignment of high-spin (HS) and BS states a four-spin cluster of 2. Atom numbers as inHamiltonian Eq. 2 correspond to Co1-Co4 ions in 2.

Col	Co2	Co3	Co4	state	M_S
up	up	up	up	HS	6
down	up	up	up	BS1	2
up	down	up	up	BS2	2
up	up	down	up	BS3	2
up	up	up	down	BS4	2
down	down	up	up	BS5	0
down	up	down	up	BS6	0
down	up	up	down	BS7	0

Complex	Magnetic Interaction	SMM?	U _{eff} [K]	H _{DC} [Oe]	Ref.
{[Co ₇ (C ₂ H ₅ OH)1.5(H ₂ O)0.5(Hdatrz) ₂ (µ3-	AFM	Yes	17.65	3000	
$OH_4(1p)_5$]·2.5H ₂ O·C ₂ H ₅ OH _n					S1
$[Co_7(H_2O)_4(ade)_2(\mu 3-OH)_6(sip)_2]_n$	FM	No	-	-	
$[\operatorname{Co}_7(\mathrm{L}^1)_{12}]\mathrm{Cl}_2$	AFM	No	-	-	S2
[Co ₇ (OH) ₄ (Hesp) ₂ (esp) ₄ (MeCN) ₂]·4MeCN	AFM	No	-	-	S3
$[\text{Co}_7(\text{vab})_6](\text{NO}_3)_2 \cdot 2\text{H}_2\text{O}$	FM	Yes	18.8 (estimated)	0	S4
$[Co_7(L^2)_6(\mu_3-OCH_3)_6](ClO_4)_2 \cdot H_2O$	FM	No			S5
$[\operatorname{Co}_7(\operatorname{bm})_{12}] \cdot (\operatorname{ClO}_4)_2 \cdot 13\mathrm{H}_2\mathrm{O}$	FM	No			S6
$[\text{Co}_7(\text{L}^3)_6](\text{NO}_3)_2 \cdot 2\text{CH}_3\text{OH}$	FM	Yes	-		S7
$[Co_7(mmimp)_6(MeO)_6] \cdot Br_2$	FM	No			S8
$[\text{Co}_7(\text{emmp})_6(\text{CH}_3\text{O})_6]\cdot(\text{ClO}_4)_2$	FM	No			S9
$[\text{Co}_7(\text{heb})_6(\mu_3\text{-OCH3})_6]\cdot(\text{ClO}_4)_2$	FM	No			S10
$[Co_7(bhqe)_3(OH)_2(H_2O)_6] \cdot 2C_2H_5OH \cdot H_2O$	FM	Yes	21/13	0	S11
$[\text{Co}_7(\text{mmp})_6(\text{CH}_3\text{O})_6]\cdot(\text{ClO}_4)_2$	FM	No			S12
$[Co_7(\mu_3-OH)_6(L^4)_6](ClO_4)_2 \cdot 12H_2O$	FM	No			
$[Co_7(\mu_3-CH_3O)_6-(L^4)_6](ClO_4)_2$	FM	No			S13
$[Co_7(\mu_3-N_3)_6(L^4)_6](ClO_4)_2$	FM	Yes	-		
$[Co_7(L^5)_9(OH)_2(OAc)_{2.7}(MeO)_{0.3}(H_2O)] \cdot 4.6MeOH \cdot 3.3H_2O$	AFM	No			S14
$[\text{Co}_7(\text{eimp})_6(\text{OMe})_6] \cdot 2\text{ClO}_4$	FM	No			S15
$[Co_7(\mu-L^6)_6(\mu-OMe)_6]Cl_2$	FM	No			S16
$[\text{Co}_7(\text{immp})_6(\text{CH}_3\text{O})_6] \cdot 2\text{ClO}_4$	FM	No			S17
$[Co_7(OH)_6(L^7)_6](NO_3)_2 \cdot 2MeOH$	FM	No			S18
[Co ₇ (bzp) ₆ (N ₃) ₉ (CH ₃ O) ₃](ClO ₄) ₂ ·2H ₂ O	FM	Yes	-		S19
1	FM	Yes	8.89	0	This Work

Table S6: Magneto-structural data of reported Co^{II}₇ disk/wheel-shaped structures.

Abbreviations: Hdatrz = 3,5-diamino-1,2,4-triazole; ade^- = adeninate, ip^{2-} = isophthalate; sip^{3-} : 5-sulfoisophthalate; HL^1 = pyridine-2-ylmethanol; esp = $\alpha, \alpha, \alpha', \alpha'$ -tetramethyl-1,3-benzenedipropionate; H_2vab = 2-[(2-hydroxymethyl-phenylimino)-methyl]-6-methoxy-phenol; HL^2 = N-(2-hidroxy-3-methoxybenzylidene)-2-methoxy-benzylamine; Hbm = (1*H*-Benzimidazol)-methanol; H_2L^3 = 2-(2-hydroxy-3-methoxybenzylideneamino)phenol; Hmmimp = 2-methoxy-6-methyliminomethyl-phenol; Hemmp = 2-ethyliminomethyl-6-methoxy-phenol; Hheb = 2-hydroxy-3-ethoxy-benzaldehyde; H_4bhqe = 2-(hydroxymethyl)quinolin-8-ol; mmp = 2-methoxy-6-methyliminomethyl-phenol anion; HL^4 = 2-methoxy-6-(iminomethyl)phenol; HL^5 = 11*H*-indeno[1,2-*b*]quinoxalin-11-one oxime; Heimp = 2-ethoxy-6-(iminomethyl)phenol; HL^6 = 2-{(3-ethoxypropylimino)methyl}-6-methoxyphenol; bzp = 2-benzoyl pyridine.

Complex	Magnetic Interactio n	SMM?	U _{eff} [K]	H _{DC} [Oe]	Ref.	
[Co ₄ (pmab) ₄ Cl ₄]	FM (Weak)	Yes	-	2000	S20	
[Co ₄ (pmab) ₄ (OBz) ₂]Cl ₂	AFM					
[Co ₄ (hmp) ₄ (MeOH) ₄ Cl ₄]	FM	Yes	-		S21	
$[C(NH_2)_3]_8 \{Co_4(cit)_4\} \cdot 4H_2O$	-	Yes	21	1000	S22	
[C(NH ₂) ₃] ₈ [Co ₄ (cit) ₄]·8H ₂ O	AFM	Yes	13.1	Close to zero	S23	
$[Co_4(TTA)_4(OMe)_4(EtOH)_4]$	FM	Yes	-		~ • •	
[Co4(TTA)4(OMe)4(MeOH)4] (2)	FM	No			S24	
$[Co_4(L^8)_4(13-OMe)_4(MeOH)_4]$	FM	No			625	
[Co4(L ⁹)4(m ₃ -OMe)4(MeOH)4]	FM	Yes			825	
[Co ₄ (bm) ₄ Br ₄ (CH ₃ OH) ₃ (H ₂ O)]·2CH ₃ OH	FM	No				
$[Co_4(bm)_4Br_4(CH_3CH_2OH)_4]$	FM	No				
[Co ₄ (mbm) ₄ Br ₄ (CH ₃ OH) ₄]	FM	Yes	26.7	0	S26	
[Co ₄ (mbm) ₄ Br ₄ (CH ₃ CH ₂ OH) ₄]	FM	Yes	21.0	0		
[Co ₄ (ntfa) ₄ (CH ₃ O) ₄ (CH ₃ OH) ₄]	FM	Yes	30.28	2000	S27	
$[Co_4(vab)_4(H_2O)_4] \cdot 4THF \cdot 4H_2O$	AFM	No			S4	
$[Co_4(heb)_4(m_3-OCH_3)_4(m_1-HOCH_3)_4] \cdot (H_2O)_2$	AFM	No			S10	
$[Co_4(bm)_4Cl_4(C_3H_7OH)_4]$	FM	No				
[Co ₄ (bm) ₄ (m-HCO ₂) ₂ (m ₂ -HCO ₂) ₂ (C ₃ H ₇ OH) ₂]	AFM	No			S6	
[CoII4(Cl)4(HL ¹⁰)4]	FM	Yes	55.8	5000	S28	
[Co ₄ L ¹¹ ₄]·CH ₃ OH	FM	Yes	-		S29	
$[Co_4(HL^{12})_4]$	FM	Yes	-		S30	
$[Co(\mu_3-Cl)Cl(HL\cdot S)]_4$	FM	Yes	20.1	0	S31	
2	FM	Yes	12.86	0	This work	

Table S7: Magneto-structural data of reported Co^{II}_4 -cubane and $Co^{III}_2Co^{II}$ defective dicubane types structures

Abbreviations: Hpmab = $[2-\{(2-pyridinylmethylene)amino\}$ benzenemethanol; hmp = 2-(hydroxymethyl)pyridine; cit = citrate ion; TTA = 4,4,4-trifluoro-1-thienoyl-2,4-butanedione; HL⁸ = 3,5-dichloro-2-hydroxy-benzaldehyde; HL⁹ = 2-hydroxy-3-methoxybenzaldehyde; bm = (1H-benzo[d]imidazol-2-yl)methanolate; mbm = 1-Me-(1H-benzo[d]imidazol-2-yl)methanolate; ntfa = 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione; H₂vab = 2-[(2-hydroxymethyl-phenylimino)-methyl]-6-methoxy-phenol; Hheb = 2-hydroxy-3-ethoxy-benzaldehyde; Hbm = (1H-Benzimidazol)-methanol; H₂L¹⁰ = N-substituted diethanolamine ligand; H₂L¹¹ = 1-(((2-hydroxy-2,3-dihydro-1H-inden-1-yl)imino)methyl)naphthalen-2-ol; H₃L¹² = (E)-3-((2-hydroxy-3-methoxybenzylidene)amino)propane-1,2-diol; , HL·S = pyridyl-alcohol-type ligand.

References

- S1. E.-C. Yang, Z.-Y. Liu, L. Zhang, N. Yang and X.-J. Zhao, *Dalton Trans.*, 2016, 45, 8134–8141.
- S2 R. Pattacini, P. Teo, J. Zhang, Y. Lan, A. K. Powell, J. Nehrkorn, O. Waldmann, T. S. Andy Hor and P. Braunstein, *Dalton Trans.*, 2011, 40, 10526–10534.
- S3. J. Pakula and J. F. Berry, *Dalton Trans.*, 2018, 47, 13887–13893.
- S4. R. Modak, Y. Sikdar, A. E. Thuijs, G. Christou and S. Goswami, *Inorg. Chem.*, 2016, 55, 10192–10202.
- S5. R. Gheorghe, G. A. Ionita, C. Maxim, A. Caneschi, L. Sorace and M. Andruh, *Polyhedron*, 2019, **171**, 269–278.
- S6. S. H. Zhang, L. F. Ma, H. H. Zou, Y. G. Wang, H. Liang and M. H. Zeng, *Dalton Trans.*, 2011, **40**, 11402–11409.
- S7. H. Zhang, J. Zhang, R. Liu, Y. Li, W. Liu and W. Li, *Eur. J. Inorg. Chem.* 2016, **2016**, 4134–4144.
- S8. R. X. Zhao, Q. P. Huang, G. Li, S. H. Zhang, H. Y. Zhang and L. Yang, J. Cluster Sci., 2014, 25, 1099–1108.
- S9. Q. P. Huang, G. Li, H. Y. Zhang, S.-H. Zhang and H. P. Li, Z. Anorg. Allg. Chem., 2014, 640, 1403–1407.
- S10. S. H. Zhang, R. X. Zhao, G. Li, H. Y. Zhang, C. L. Zhang and G. Muller, RSC Adv., 2014, 4, 54837–54846.
- S11. Q. Chen, M. H. Zeng, Y. L. Zhou, H. H. Zou and M. Kurmoo, *Chem. Mater.*, 2010, 22, 2114–2119.
- S12. W. Wang, H. Hai, S. H. Zhang, L. Yang and C. L. Zhang, J. Cluster Sci., 2014, 25, 357– 365.
- S13. Y. L. Zhou, M. H. Zeng, L. Q. Wei, B. W. Li and M. Kurmoo, *Chem. Mater.*, 2010, 22, 4295–4303.
- S14. A. B. Canaj, L. E. Nodaraki, K. Ślepokura, M. Siczek, D. I. Tzimopoulos, T. Lis and C. J. Milios, *RSC Adv.*, 2014, **4**, 23068–23077.
- S15. L. Q. Wei, B. W. Li, S. Hu and M. H. Zeng, CrystEngComm, 2011, 13, 510-516.
- S16. T. Singha Mahapatra, D. Basak, S. Chand, J. Lengyel, M. Shatruk, V. Bertolasi and D. Ray, *Dalton Trans.*, 2016, 45, 13576–13589.
- S17. S.-H. Zhang, Y. Song, H. Liang and M.-H. Zeng, CrystEngComm, 2009, 11, 865-872.
- S18. S. T. Meally, C. McDonald, P. Kealy, S. M. Taylor, E. K. Brechin and L. F. Jones, *Dalton Trans.*, 2012, 41, 5610–5616.
- S19. Y.-Z. Zhang, W. Wernsdorfer, F. Pan, Z.-M. Wang and S. Gao, *Chem. Commun.*, 2006, 3302–3304.
- S20. Y. Suemitsu, Y. Amakusa, H. Yoshino, M. Ohba and M. Koikawa, *Magnetochemistry* 2024, **10**, 85–97.
- S21. E. C. Yang, D. N. Hendrickson, W. Wernsdorfer, M. Nakano, L. N. Zakharov, R. D. Sommer, A. L. Rheingold, M. LedezmaGairaud and G. Christou, *J. Appl. Phys.*, 2002, 91, 7382–7384.
- S22. K. W. Galloway, A. M. Whyte, W. Wernsdorfer, J. SanchezBenitez, K. V. Kamenev, A. Parkin, R. D. Peacock and M. Murrie, *Inorg. Chem.*, 2008, **47**, 7438–7442.
- S23. B. Moubaraki, K. S. Murray, T. A. Hudson and R. Robson, Eur. J. *Inorg. Chem.*, 2008, 4525–4529.
- S24. G. P. Guedes, S. Soriano, N. M. Comerlato, N. L. Speziali, P. M. Lahti, M. A. Novak and M. G. F. Vaz, *Eur. J. Inorg. Chem.*, 2012, 23, 5642–5648.
- S25. S. H. Zhang, Y. D. Zhang, H. H. Zou, J. J. Guo, H. P. Li, Y. Song and H. Liang, *Inorg. Chim. Acta*, 2013, **396**, 119–125.

- S26. X. F. Ma, Z. Wang, X. L. Chen, M. Kurmoo and M. H. Zeng, *Inorg. Chem.*, 2017, 56, 15178–15186.
- S27. Y. Wu, J. Xi, T. Xiao, J. Ferrando-Soria, Z. Ouyang, Z. Wang, S. Luo, X. Liu and E. Pardo, *Inorg. Chem. Front.*, 2021, 8, 5158–5168.
- S28. A. Scheurer, A. M. Ako, R. W. Saalfrank, F. W. Heinemann, F. Hampel, K. Petukhov, K. Gieb, M. Stocker and P. Müller, *Chem.–Eur. J.*, 2010, **16**, 4784–4792.
- S29. H. Sun, J. Zhang, Y. Cai, W. Liu, X. Zhang, Y. Dong and Y. Li, *Polyhedron*, 2017, 125, 135–140.
- S30. Q. Gao, Y. R. Qin, Y. M. Chen, W. Liu, H. Y. Li, B. Wu, Y. H. Li and W. Li, *RSC Adv.*, 2015, **5**, 43195–43201.
- S31. V. A. Ghisolfi, K. Y. Monakhov, R. Pattacini, P. Braunstein, X. López, C. d. Graaf, M. Speldrich, J. v. Leusen, H. Schilder and P. Kögerler, *Dalton Trans.*, 2014, 43, 7847–7859.