Supporting Information

Canonical Zn-Zn pseudo-triple bond with double aromaticity in D_{5h}-Zn₂Na₅- cluster

Xinluo Wu ^a, Xingman Liu ^{a, *}, Lifang Yan ^a, Yue Huang ^a, Xiaomeng Wang ^{a, *}, Zhongmin Su ^{b, *}

Address:

- ^a School of Chemistry and Chemical Engineering, School of Physics, Ningxia University, Yinchuan 750021, China
- ^b State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China

*Corresponding Authors:

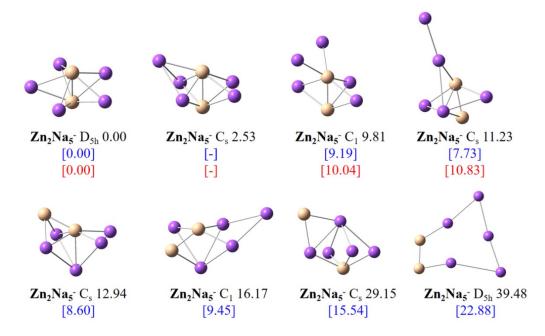
E-mail address:

liuxm2020@nxu.edu.cn (X. M. Liu); xiaomengwang@nxu.edu.cn (X. M. Wang); zmsu@nenu.edu.cn (Z. M. Su);

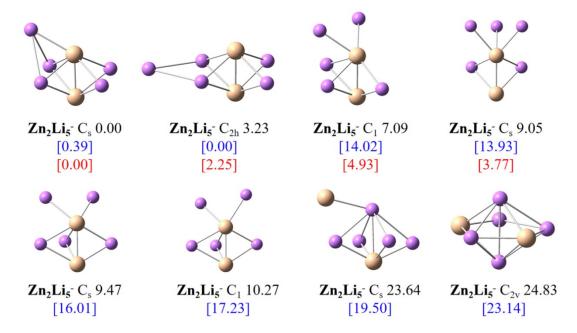
Table of Contents

1. Supplementary figures

- **1.1. Figure. S1.** Structures and relative energies of Zn₂Na₅⁻.
- **1.2. Figure. S2.** Structures and relative energies of Zn₂Li₅⁻.
- **1.3. Figure. S3.** The important front molecular orbital of C_{2h}-Zn₂Li₆ and C_{2h}-Zn₂Na₆.
- **1.4. Figure. S4.** Schematic of the ten lone pairs of AdNDP patterns for D_{5h}-Zn₂Na₅.
- **1.5. Figure. S5.** The dominant FMO correlation diagram in Zn₂Na₅⁻ between Zn₂ and Na₅⁻ fragments.
- 1.6. Figure. S6. Schematic of the AdNDP patterns for C_s- Zn₂Li₅-.
- **1.7. Figure. S7.** Only σ and except σ separated LOL of D_{5h} - Zn_2Na_5 .
- **1.8. Figure. S8.** The contribution of each atom towards the Zn-Zn ELF basin in D_{5h} -Zn₂Na₅-.
- **1.9. Figure. S9.** The contribution of each atom towards the Zn-Zn ELF basin in C_s-Zn₂Li₅-.
- **1.10. Figure. S10.** Natural orbitals of D_{5h} - Zn_2Na_5 from CASSCF(10,13).


2. Supplementary tables

- **2.1. Table S1**. The lowest vibrational frequencies of D_{5h}-Zn₂Na₅, C_s-Zn₂Li₅.
- **2.2. Table S2.** The data of the common molecular structure parameters under TPSSh/6-311++G(d,p).
- **2.3. Table S3.** The data of the common molecular structure parameters under M06-2X/def2-TZVP.
- **2.4. Table S4a-d.** Detailed orbital component analysis results of D_{5h}-Zn₂Na₅-, Cs-Zn₂Li₅-, C_{2h}-Zn₂Li₆ and C_{2h}-Zn₂Na₆.
- **2.5.** Table S5. Detailed the AIM topological parameters in TPSSh/6-311++G(d,p).


3. Supplementary scheme

Scheme S1. Cartesian coordinates of the optimized geometries.

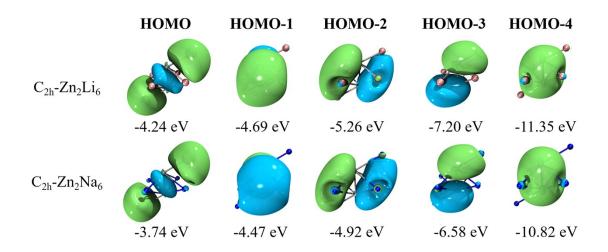
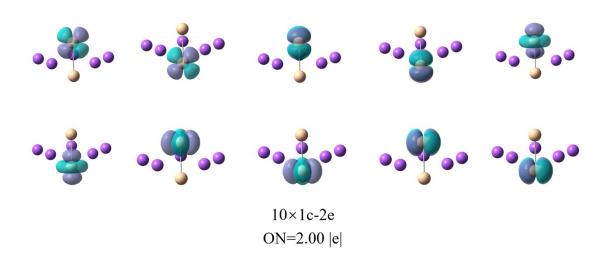
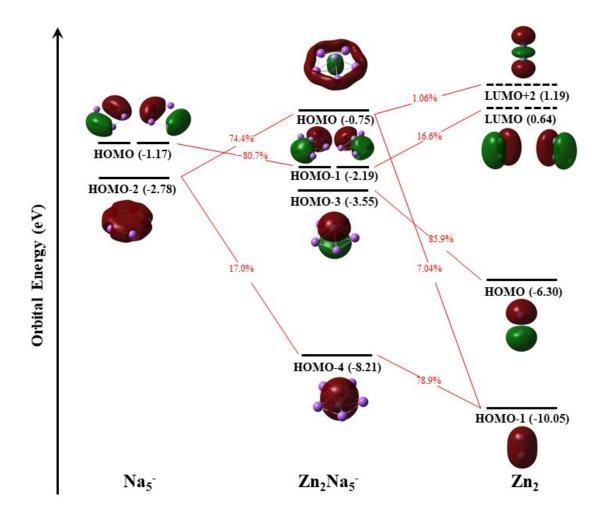
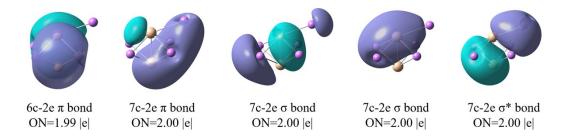
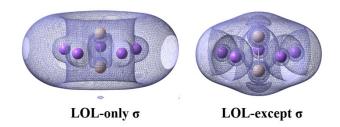

1. Supplementary figures

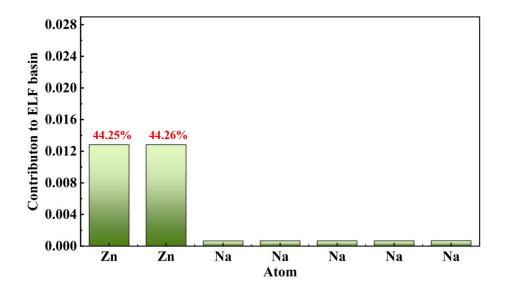
Figure S1. Optimized geometries of the isomers of Zn₂Na₅⁻ cluster. Relative energies (kcal/mol) are computed at B3LYP/6-31G(d) level of theory. The energy values (kcal/mol) shown in blue were calculated at the CCSD/6-311G(d)/ LANL2DZ level (LANL2DZ for Zn, 6-311G(d) for Na) and the energy values (kcal/mol) shown in red were calculated at the TPSSh/6-311++G(d,p) level.

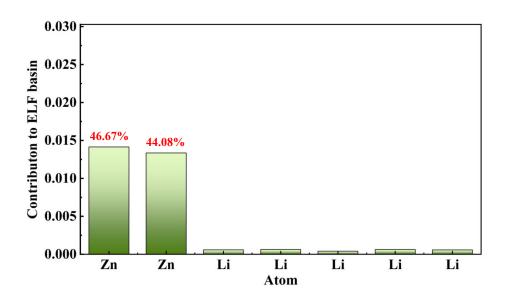
Figure S2. Optimized geometries of the isomers of Zn₂Li₅⁻ cluster. Relative energies (kcal/mol) are computed at B3LYP/6-31G(d) level of theory. The energy values (kcal/mol) shown in blue were calculated at the CCSD/6-311G(d)/LANL2DZ level (LANL2DZ for Zn, 6-311G(d) for Li) and the energy values (kcal/mol) shown in red were calculated at the TPSSh/6-311++G(d,p) level.

Figure S3. The important FMOs of C_{2h} - Zn_2Li_6 and C_{2h} - Zn_2Na_6 structures. Computed at the CCSD/6-311G(d)/LANL2DZ level (LANL2DZ for Zn, 6-311G(d) for Na, Li).


Figure S4. Ten lone pairs of electrons occupy the d orbital of Zn.


Figure S5. The dominant FMO correlation diagram of D_{5h} -Zn₂Na₅⁻ between Na₅⁻ and Zn₂ fragments calculated at the CCSD/6-311G(d)/LANL2DZ level. The horizontal dashed and solid lines represent virtual and occupied molecular orbitals, respectively (the orbital energies are also given in brackets, unit: eV). It can be observed that the Na₅⁻ delocalized (HOMO-2) orbital lie in the equatorial plane contribute 74.4% to the σ orbital of Zn-Zn (HOMO) in D_{5h} -Zn₂Na₅⁻.


Figure S6. AdNDP orbitals of C_s - Zn_2Li_5 - cluster. Occupation numbers (ON) are also shown, the unit is |e|. Computed at CCSD/6-311G(d)/LANL2DZ level of theory.

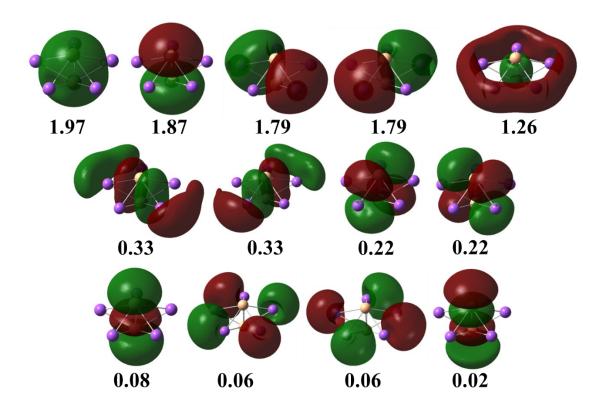

Figure S7. Only σ and except σ separated LOL of D_{5h} - Zn_2Na_5 - calculated at CCSD/6-311G(d)/LANL2DZ level of theory.

Figure S8. The diagram shows the contribution of each atom towards the Zn-Zn ELF basin in D_{5h} - Zn_2Na_5 -.

Figure S9. The diagram shows the contribution of each atom towards the Zn-Zn ELF basin in C_s -Zn₂Li₅-.

Figure S10. Natural orbitals of the global minimum isomer of Zn_2Na_5 from CASSCF(10,13) and their occupation numbers.

2. Supplementary tables

2.1. Table S1. The lowest vibrational frequencies of D_{5h} - Zn_2Na_5 , C_s - Zn_2Li_5 and C_s - Zn_2Na_5 are calculated at the CCSD/6-311G(d)/LANL2DZ level (LANL2DZ for Zn, 6-311G(d) for Na, Li).

Molecules	Structure	Lowest vibrational frequency (cm ⁻¹)
D _{5h} -Zn ₂ Na ₅	Na Zn Na Na Na	37.41
C _s -Zn ₂ Li ₅ -	Zn Li	70.75

Note: C_s - Zn_2Na_5 - exhibits an imaginary frequency, further optimization will yield a D_{5h} structure.

2.2. Table S2. The bond length (R_{Zn-Zn}) , WBI_{Zn-Zn} , FC_{Zn-Zn} , Natural electronic configuration of Zn of Zn–Zn bonding systems. Structures calculated and analyzed at the TPSSh/6-311++G(d,p) level.

Molecule	R (Å) WBI	EC (mDr. 8-1)	Natural electronic	NPA	
Molecule	Molecule R (Å) WBI FC (mDyn Å ⁻¹)		configuration of Zn	NFA	
D _{5h} -Zn ₂ Na ₅ -	2.492	1.588	0.575	$[core]4s^{1.49}3d^{10.00}4p^{1.46}$	-0.97
C_{2h} - Zn_2Na_6	2.476	1.832	0.548	$[core]4s^{1.38}3d^{10.0}4p^{1.86}$	-1.25
$D_{4h}\text{-}Zn_2Na_4$	2.606	1.639	0.365	$[core]4s^{1.47}3d^{10.0}4p^{1.57}$	-1.05
C_s - Zn_2Li_5 -	2.470	1.669	0.580	$[core]4s^{1.26}3d^{9.99}4p^{1.45/2.02}$	-1.40
C_{2h} - Zn_2Li_6	2.480	1.613	0.538	$[core]4s^{1.26}3d^{9.99}4p^{1.96}$	-1.24
D_{4h} - Zn_2Li_4	2.519	1.588	0.497	$[core]4s^{1.38}3d^{9.99}4p^{1.56}$	-0.95
$Zn_2(CO)_4^*$	2.273	1.064	1.529	$[core]4s^{0.82}3d^{9.94}4p^{1.29}$	-0.06

Note: With an asterisk, the results were calculated to a single point on the same level for comparison.

2.3. Table S3. The bond length (R_{Zn-Zn}) , WBI_{Zn-Zn} , FC_{Zn-Zn} , Natural electronic configuration of Zn of Zn–Zn bonding systems. Structures calculated and analyzed at the M06-2X/def2-TZVP level.

Molecule	R (Å)	WBI	FC (mDyn Å ⁻¹)	Natural electronic configuration of Zn	NPA
D_{5h} - Zn_2Na_5	2.659	1.520	0.453	[core]4s ^{1.44} 3d ^{10.00} 4p ^{1.41}	-0.89
C_{2h} - Zn_2Na_6	2.683	1.546	0.370	$[core]4s^{1.35}3d^{10.0}4p^{1.73}$	-1.09
D_{4h} - Zn_2Na_4	2.832	1.377	0.264	$[core]4s^{1.46}3d^{10.0}4p^{1.40}$	-0.89
C_s - Zn_2Li_5	2.630	1.426	0.456	$[core]4s^{1.21/1.25}3d^{10.0}4p^{1.38/1.81} \\$	-1.09
C_{2h} - Zn_2Li_6	2.643	1.326	0.419	$[core]4s^{1.18}3d^{10.0}4p^{1.82}$	-1.01
D_{4h} - Zn_2Li_4	2.678	1.371	0.390	$[core]4s^{1.33}3d^{10.0}4p^{1.42}$	-0.76
$Zn_2(CO)_4^*$	2.273	1.192		$[core]4s^{0.77}3d^{9.96}4p^{1.39}$	-0.12

Note: With an asterisk, the results were calculated to a single point on the same level for comparison.

2.4. Table S4a. Orbital and component analysis of D_{5h}-Zn₂Na₅⁻ structures. Computed at the CCSD/6-311G(d)/LANL2DZ level (LANL2DZ for Zn, 6-311G(d) for Na).

Orbital	НОМО	НОМО-1	НОМО-2
$D_{5h}\text{-}Zn_2Na_5\text{-}$			
E/eV	-0.751	-2.191	-2.191
	$Zn_1 @4s{\sim}5.52\%$		
	Zn_1 ©4p \sim 0.61%	$Zn_1@4p{\sim}27.89\%$	$Zn_1@4p{\sim}27.89\%$
Component	$Zn_2 @4s{\sim}5.52\%$	$Zn_2 @4p\sim 27.89\%$	Zn_2 ©4p~27.89%
	Zn_2 ©4p \sim 0.61%	Na©3s~33.80%	Na©3s~31.15%
	Na©3s~78.65%		

Table S4b. Orbital and component analysis of Cs-Zn₂Li₅- structures. Computed at the CCSD/6-311G(d)/LANL2DZ level (LANL2DZ for Zn, 6-311G(d) for Li).

Orbital	НОМО	НОМО-1	НОМО-2
C_s - Zn_2Li_5 -			
E/eV	-0.618	-1.986	-2.502
Component	Zn_1 ©4p~10.99% Zn_2 ©4s~4.05% Zn_2 ©4p~2.89% Li©2s~66.81% Li©2p~13.60%	$Zn_{1}@4p{\sim}29.36\%$ $Zn_{2}@4p{\sim}36.05\%$ $Li@2s{\sim}21.88\%$ $Li@2p{\sim}10.87\%$	Zn_1 ©4s~2.49% Zn_1 ©4p~17.73% Zn_2 ©4s~5.16% Zn_2 ©4p~34.46% Li©2p~10.87%

Table S4c. Orbital and component analysis of C_{2h}-Zn₂Li₆ structures. Computed at the CCSD/6-311G(d)/LANL2DZ level (LANL2DZ for Zn, 6-311G(d) for Li).

Orbital	НОМО	НОМО-1	НОМО-2
C_{2h} - Zn_2Li_6			
E/eV	-4.240	-4.687	-5.262
			$Zn_1 @4s{\sim}8.03\%$
	$Zn_1 @4p{\sim}14.49\%$	$Zn_1 @4p{\sim}32.60\%$	Zn_1 ©4p~23.61%
Commonant	$Zn_2 @4p{\sim}14.49\%$	$Zn_2 @4p{\sim}32.60\%$	$Zn_2 @4s{\sim}8.03\%$
Component	Li©2s~48.89%	Li©2s~21.57%	Zn_2 ©4p~23.61%
	Li©2p~17.69%	Li©2p~10.32%	Li©2s~20.17%
			Li©2p~13.43%

Table S4d. Orbital and component analysis of C_{2h} - Zn_2Na_6 structures. Computed at the CCSD/6-311G(d)/LANL2DZ level (LANL2DZ for Zn, 6-311G(d) for Na).

Orbital	НОМО	НОМО-1	НОМО-2
C_{2h} - Zn_2Na_6			
E/eV	-3.739	-4.472	-4.921
	Zn_1 ©4s~2.39%		Zn_1 ©4s~4.61%
	Zn_1 ©4p~ 8.81%	Zn_1 ©4p~36.05%	Zn_1 ©4p~27.21%
C	$Zn_2 @4s{\sim}2.39\%$	Zn ₂ ©4p~36.05%	$Zn_2 @4s{\sim}4.61\%$
Component	Zn_2 ©4 p ~8.81%	Na©3s~19.75%	$Zn_2 @4p{\sim}27.21\%$
	Na©3s~65.63%	Na©3p~2.94%	Na©3s~25.66%
	Na©3p~6.31%		Na©3p~7.90%

Note: "Zn₁" denotes the Zn atom located above and "Zn₂" denotes the Zn atom located below.

2.5. Table S5. Topological parameters of electron density, ρ , laplacian of electron density, $\nabla^2 \rho$, local electronic energy density, H(r), ratio of potential energy density to kinetic energy density, |V(r)|/G(r). Every value is in Au. Computed at TPSSh/6-311++G(d,p).

Molecule	ρ	$ abla^2 ho$	H(r)	V(r) /G(r)
D _{5h} -Zn ₂ Na ₅ -	0.042	0.058	-0.013	1.47
C_s - Zn_2Li_5 -	0.045	0.062	-0.014	1.48
C_{2h} - Zn_2Li_6	0.045	0.060	-0.014	1.50
C_{2h} - Zn_2Na_6	0.044	0.056	-0.014	1.50
D_{4h} - Zn_2Li_4	0.038	0.070	-0.010	1.37
D_{4h} - Zn_2Na_4	0.032	0.059	-0.007	1.32
$Zn_2(CO)_4^*$	0.069	0.052	-0.030	1.70

Note: With an asterisk, the results were calculated to a single point on the same level for comparison.

Scheme S1. Cartesian coordinates of the optimized geometries

Na	-2.92789900	0.11523100	0.00056200
Na	2.30090200	-1.81415300	-0.00025300
Na	-0.79508000	2.81998700	-0.00010400
Na	-1.01430900	-2.74877000	-0.00021500
Na	2.43642800	1.62762100	-0.00007800
Zn	0.00009400	-0.00002500	1.32335900
Zn	-0.00010900	0.00005600	-1.32332700

C_s - Zn_2Li_5 -

Li	-0.60627300	1.78626300	1.57275300
Li	0.35854600	-1.47778200	-1.65674500
Li	2.83554900	-2.02341700	-0.00010900
Li	0.35905100	-1.47744500	1.65702400
Li	-0.60655400	1.78525300	-1.57363400
Zn	-1.38086800	-0.29077400	0.00009600
Zn	1.14683600	0.43148700	-0.00002500