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I. Characterization of the complexes

1. IR spectra
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Figure S1. FT-IR spectrum of complex [Au(CsF5)(PNH-2)] (1)
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Figure S2. FT-IR spectrum of complex [Au(CsCl2Fs)(PNH2)] (2)
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Figure S3. FT-IR spectrum of complex [Au(CsCls)(PNH2)] (3)
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Figure S4. FT-IR spectrum of complex [Au(o-CeBrFs)(PNH2)] (4)



2. Mass spectrometry data
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Figure S5. ESI positive of [Au(CsFs)(PNH?2)] (1): spectrum of experimental micrOTOF-Q (top)
versus theoretical (bottom) positive mass spectrometry data
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Figure S6. ESI Positive of [Au(CsCl2Fs)(PNH2)] (2): spectrum of experimental micrOTOF-Q (top)

versus theoretical (bottom) positive mass spectrometry data
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Figure S7. ESI Positive of [Au(CsCls)(PNH2)] (3): spectrum of experimental micrOTOF-Q (top)
versus theoretical (bottom) positive mass spectrometry data
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Figure S8. ESI Positive of [Au(o-CsBrFs)(PNH2)] (4): spectrum of experimental micrOTOF-Q
(top) versus theoretical (bottom) positive mass spectrometry data



3.'H NMR spectra (300 MHz, 298K)
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Figure S9. '"H NMR spectrum of complex [Au(CsFs)(PNH2)] (1) in CDCls 400
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Figure $10. '"H NMR spectrum of complex [Au(CeCLFs)(PNH2)] (2) in CDCls 400
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Figure S11. '"H NMR spectrum of complex [Au(CsCls)(PNH2)] (3) in CDCls 300
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Figure $12. '"H NMR spectrum of complex [Au(o-CsBrFa)(PNHz)] (4) in CDCls 400



4. YF NMR spectra (282 MHZ, 298K)
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Figure S13. F NMR spectrum of complex Au(CsFs)(PNH2)] (1) in CDCls 400
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Figure S14. F NMR spectrum of complex [Au(CsCl2F3)(PNH2)] (2) in CDCls 300
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Figure S15. F NMR spectrum of complex [Au(o-CsBrF4)(PNH2)] (4) in CDClIs 400

5. 3P{1H} NMR spectra (MHZ, 298K)
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Figure S16. *'P{"H} NMR spectrum of complex [Au(CsF5)(PNH-2)] (1) in CDCls 400
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Figure S17. 3'P{1H} NMR spectrum of complex [Au(CsCl2F3)(PNH2)] (2) in CDCls 300
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Figure S18. 3'P{'"H} NMR spectrum of complex [Au(CsCls)(PNH2)] (3) in CDCls 300
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Figure S19. ¥'P{1H} NMR spectrum of complex [Au(o-CeBrF4)(PNH2)] (4) in CDCls 400



6. Single crystals X-ray diffraction analyses

Table S1. Data collection and structure refinement details for 1, 2, 3 and 4.

1 2 3 4
Chemical Formula C2sHisAuFsNP C2sH16AuCl2FsNP C2sHisAuClsNP C2sHisAuBrFsNP
Crystal habit colorless colorless colorless colorless
Crystal size/mm 0.060 x 0.026 x 0.014 | 0.143 x 0.121 x 0.049 | 0.162 x 0.059 x 0.020 |0.283 x 0.096 x 0.084
Crystal system Monoclinic Monoclinic Triclinic Monoclinic
Space group P2i/c P2i/n P-1 P2i/n
a/A 7.9453(7) 8.2765(5) 10.1789(11) 8.1842(11)
b/A 12.0802(10) 11.9307(7) 10.6136(12) 12.0374(15)
/A 22.847(2) 22.5683(15) 11.2905(12) 23.570(3)
al® 90 90 101.120(4) 90
p/e 98.012(3) 100.476(2) 93.797(4) 99.558(5)
y/° 90 90 93.764(4) 90
V/A3 2171.5(3) 2191.3(2) 1190.4(2) 2289.8(5)
z 4 4 2 4
Dc/g em 1.962 2.044 2.019 2.037
M 641.31 674.21 723.56 702.22
F(000) 1224.0 1288.0 692.0 1328.0
T/K 118(2) 100(2) 100(2) 300(2)
20max/° 55.930 55.788 55.82 51.362
H(Mo-Ka)/mm! 6.903 7.069 6.822 8.284
No. refl. Measured 41168 60441 29401 111607
No. unique refl. 5200 5214 5660 4329
Rint 0.0679 0.0357 0.0313 0.0437
R[F>20(F)][a] 0.0678 0.0352 0.0278 0.0726
wRIF2, all refl.][b] 0.1443 0.0865 0.0620 0.1549
No. of refl. Used 5200 5214 5660 4329
[F>20(F)]
No. of parameters 286 289 298 286
No. of restrains 0 0 0 0
Sld] 1.216 1.156 1.172 1.342
Max. residual electron 1.30 1.67 1.39 2.223

density/e~A'3

aR: (F)=Z”F0| - |FC|I/Z|F0 |.
b wR: (F2) = [ {w(F=F2)4/ Y {w(F2)31°5; w = 0X(Fo?) + (aP)? + bP, where P = [Fo? + 2F2]/3 and a
and b are constants adjusted by the program.

¢ S = [Y{w(F*F2&)?/(n—p)]°3, where n is the number of data and p the number of parameters.




Figure S20. Two different views of the supramolecular arrangement in the crystal structure of 1,
depicting the intramolecular N-H--Au hydrogen bonds (in yellow), the Au--F (in blue) and n-n
stacking interactions between CeFs rings (in red) within the dimers, and intermolecular N-H--F
and C-H-F hydrogen bonds (in green) that give rise to the 3D network. Hydrogen atoms not
involved in weak contacts have been omitted for clarity. Color code: yellow: gold; orange:
phosphorus; blue: nitrogen; grey: carbon; white: hydrogen; light green: fluorine.



Figure S21. Two different views of the supramolecular arrangement in the crystal structure of 2,
depicting the intramolecular N-H--Au hydrogen bonds (in yellow), the Au-+F (in blue) and n-n
stacking interactions between CeéCl2Fs rings (in red) within the dimers, and intermolecular C-
H--Cl and C-H-F hydrogen bonds (in green) that give rise to the 3D network. Hydrogen atoms
not involved in weak contacts have been omitted for clarity. Color code: yellow: gold; orange:
phosphorus; blue: nitrogen; grey: carbon; white: hydrogen; green: chlorine; light green: fluorine.



Figure S22. Supramolecular arrangement in the crystal structure of 3 viewed from the
crystallographic y axis, depicting the N-H:--Cl and C-H---Cl hydrogen bonds (in green) that give
rise to the 2D network, and the intramolecular N-H--Au hydrogen bonds (in yellow). Hydrogen
atoms not involved in weak contacts have been omitted for clarity. Color code: yellow: gold;
orange: phosphorus; blue: nitrogen; grey: carbon; white: hydrogen; green: chlorine.



Figure S23. Two different views of the supramolecular arrangement in the crystal structure of 4,
depicting the C-H--F hydrogen bonds (in green) that give rise to the 3D network depicting the
intramolecular N-H--Au hydrogen bonds (in yellow), the Au-F (in blue) and n-n stacking
interactions between C¢BrFs rings (in red) within the dimers, and intermolecular C-H--F
hydrogen bonds (in green) that give rise to the 3D network. Hydrogen atoms not involved in
weak contacts have been omitted for clarity. Color code: yellow: gold; orange: phosphorus; blue:
nitrogen; grey: carbon; white: hydrogen; brown: bromine; light green: fluorine.



II.  Computational Studies
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Figure S24. Potential energy profile for complex 1. The plot depicts the variation in relative
energy as a function of the H-N-C-C dihedral angle, calculated at 10° intervals.
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Figure S25. Potential energy profile for complex 2. The plot depicts the variation in relative
energy as a function of the H-N-C-C dihedral angle, calculated at 10° intervals.
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Figure 526. Potential energy profile for complex 3. The plot depicts the variation in relative
energy as a function of the H-N-C-C dihedral angle, calculated at 10° intervals.
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Figure S27. Potential energy profile for complex 4. The plot depicts the variation in relative
energy as a function of the H-N-C-C dihedral angle, calculated at 10° intervals.

Table S2. Tables of results obtained after conducting frequency calculations for the four
molecules (1-4) and their three corresponding models labelled as a, b, and c.

Sum of electronic and thermal Free
Energies (kJ/mol)

Comformer a b c

Compound 1 0 52.6 10.0
Compound 2 0 48.3 9.6
Compound 3 0 54.4 10.7
Compound 4 0 47.7 14.6



