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Synthesis of Ligands

Synthesis of L-F

CHO
F NH, reflux F H _
N N NaHSO; , DMF
- - 7NN
F NH, N 80 °C, 5h F N

A mixture of 4,5-difluorobenzene-1,2-diamine (200 mg, 1.39 mmol) and NaHSO; (577 mg, 5.55 mmol)
was added to the round-bottom flask. To this mixture, DMF (6 mL) and then 4-pyridinecarboxyaldehyde
(148 mg, 1.38 mmol) were added. The reaction mixture was allowed to stir at 80 °C for 5 hours. The
progress of the reaction was monitored by thin-layer chromatography (TLC). After completion, the reaction
mixture was poured into ice-cold water, filtered, and a light brown powder was obtained. Yield: 56 % (180

mg).
Synthesis of L-Cl

CHO reflux

Cl NH, Cl § _
N NaHSO, DMF ) N
+ -y - N \
Cl NH, Cl

N 80 °C, 5h

By following the procedure similar to L-F, L-CI was obtained using a mixture of 4,5-dichlorobenzene-1,2-
diamine (201 mg, 1.13 mmol), NaHSOj; (312 mg, 3.01 mmol), 4-pyridinecarboxyaldehyde (120 mg, 1.13
mmol) and DMF (6 mL). After completion, the reaction mixture was poured into ice-cold water, filtered,
and a light brown powder was obtained. Yield: 98 % (225 mg).
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Synthesis of L-Br

CHO
Br NH, reflux Br N _
SN NaHSO; DMF
JONENS LIS
Br NH, N 80 °C, 5h Br

By following the procedure similar to L-F, L-Br was obtained using a mixture of 4,5-dibromobenzene-1,2-
diamine (200 mg, 0.75 mmol), NaHSO; (312 mg, 3.01 mmol), 4-pyridinecarboxyaldehyde (121 mg, 1.13
mmol) and DMF (6 mL). After completion, the reaction mixture was poured into ice-cold water, filtered,
and a light brown powder was obtained. Yield: 69 % (184 mg).

Synthesis of L-Me

M NH CHO reflux H
e
2 N NaHSO; DMF Me N/~
’ | — > % \ /N
Me NH2 N 80 OC, 5h Me N

By following the procedure similar to L-F, L-Me was obtained using a mixture of 4,5-dimethylbenzene-
1,2-diamine (202 mg, 1.48 mmol), NaHSO; (611 mg, 5.87 mmol), 4-pyridinecarboxyaldehyde (157 mg,
1.47 mmol) and DMF (6 mL). After completion, the reaction mixture was poured into ice-cold water,
filtered, and a light brown powder was obtained. Yield: 56 % (182 mg).

Synthesis of L-Np

NH CHO reflux H
2 X NaHSO3; DMF N =
’ | Z > % \ /N
NH, N 80 °C, 5h N

By following the procedure similar to L-F, L-Np was obtained using a mixture of naphthalene-2,3-diamine
(202 mg, 1.26 mmol), NaHSO; (526 mg, 5.06 mmol), 4-pyridinecarboxyaldehyde (135 mg, 1.26 mmol)
and DMF (6 mL). After completion, the reaction mixture was poured into ice-cold water, filtered, and a
light brown powder was obtained. Yield: 57 % (178 mg).
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Fig. S1 ATR-IR spectra of Re-F, Re-Cl, Re-Br, Re-Me and Re-Np.

S5
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Fig. S2 Experimental ESI mass spectrum of [Re-F + H]" in positive ion mode.
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Fig. S3 Experimental ESI mass spectrum of [Re-Cl + H]" in positive ion mode.
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Analysis Name

Method

Sample Name
Comment

FAHRMS_ACYCLIC\raw\RB4-294.d
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Fig. S4 Experimental ESI mass spectrum of [Re-Br + H]" in positive ion mode.
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Fig. S5 Experimental ESI mass spectrum of [Re-Me + H]" in positive ion mode.
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Fig. S6 Experimental ESI mass spectrum of [Re-Np + H]" in positive ion mode.
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Fig. S17 Partial '"H NMR spectra of complex Re-F in DMSO-dg showing stability up to 48 hr.
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Fig. S18 Partial 'H NMR spectra of complex Re-Cl in DMSO-dg showing stability up to 48 hr.
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Fig. S19 Partial '"H NMR spectra of complex Re-Br in DMSO-d showing stability up to 48 hr.
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Fig. S20 Partial "H NMR spectra of complex Re-Me in DMSO-d; showing stability up to 48 hr.
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Fig. S21 Partial '"H NMR spectra of complex Re-Np in DMSO-ds showing stability up to 48 hr.
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Fig. S22 i) Concentration-dependent partial 'H NMR spectra of complex Re-F in DMSO-d, ii) 'H NMR
and DOSY NMR spectra of complex Re-F in DMSO-dj.
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Fig. S23 1C;, values of the complexes determined using MTT assay towards noncancer cell lines (A: L929,

B: NIH 3T3, C: H9C2, and D: C2C12).
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Fig. S24 1C;, values of the complexes determined using MTT assay towards cancer cell lines (A: 4T1,
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Fig. S25 (A) Evaluation of antimetastatic effects of Re-Br on HeLa cells using scratch assay, untreated

cells (negative control), and Cisplatin (positive control) (Scale bar: 100 um). (B) Percentage of scratch
closure at 0, 6, 12 and 24 hr of treatment.
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Fig. S26 (A) Detection of DNA damage after being treated with Re-F and cisplatin. Control (Untreated
4T1 cells) was used as a negative control and cells treated with cisplatin were used as a positive control
(Scale bar: 20 um). (B) Quantification data of fluorescence intensity.
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Table S1 Crystal data and structure refinement for the complexes

Crystal data

Re-F-0.5(C,Hj)

Re-Cl1

Re-Br

Empirical
Formula Mass
Crystal system

Space group
a (A)
b (A)
c(A)
a(®)
B©)

7 ()
V(A3)
d (g/cm?)
Z
T (K)

R factor (I >
wR, (1> 20(1))
R factor (all data)
WwR; (all data)

GooF
CCDC No

2(Cy4H,3F2N4O4Re)-C7Hg
1383.30
Triclinic
Pi
8.2524(12)
13.0329(17)
13.224(2)
63.168(5)
89.537(6)
81.939(6)
1254.1(3)
1.832
1
296(2)
0.0187
0.0492
0.0192
0.0494

1.139
2451110

C24H13C12N4O4Re C24H13BI‘2N404R€

678.48

Monoclinic

P21/
13.5446(8)
12.4925(7)
13.8159(8)

90
102.226(2)
90
2284.7(2)
1.973
4

194(2)

0.0360

0.0923

0.0402

0.0949

1.037
2451108

767.40
Monoclinic
P21/c
13.6752(16)
12.6834(15)
13.9947(15)
90
103.896(4)
90
2356.3(5)
2.163
4
296(2)
0.0297
0.0675
0.0357
0.0700

1.076
2451107

528



Table S2 Crystal data and structure refinement for the complexes

Crystal data

Re-Me-0.5(C;Hsg)

Re-Np . 0.5(C7H7)

Empirical Formula
Formula Mass

Crystal system
Space group
a(A)

b (A)

c(A)

a (%)

BE)
7(©)
V(A3)

d (g/cm?)

Z
T (K)

R factor (I > 25(1))
wR, (I>206(1))
R factor (all data)
wR; (all data)

GooF
CCDC No

2(CyH19N4O4Re)-C7Hg
1367.46
Triclinic
P1
9.561(3)
9.643(2)
14.547(4)
87.588(9)
89.061(10)
84.671(9)
1334.2(6)
1.702
1
294(2)
0.0276
0.0764
0.0283
0.0768

1.213
2451111

2(Cy3H7N4O4Re)-C7H;
1410.44
Triclinic
P1
9.4326(8)
9.7541(7)
14.6129(12)
86.912(3)
88.962(3)
86.779(3)
1340.26(19)
1.747
1
296(2)
0.0188
0.0491
0.0193
0.0494

1.152
2451109
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Table S3 Selected bond lengths [A] for the complexes

Rel-Cl1
Rel-C2
Rel-C3
Rel-N3
Rel-N4
Rel-0O4
NI1-H1

Re-F

1.916(3)
1.924(3)
1.908(3)
2.228(2)
2.167(2)
2.132(2)
0.72(3)

Complexes
Re-Cl Re-Br
1.897(6) 1.896(6)
1.902(7) 1.901(6)
1.901(6) 1.904(6)
2.209(5) 2.206(4)
2.171(4) 2.172(4)
2.128(4) 2.132(3)
0.80(5) 0.76(6)
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Re-Me

1.913(4)
1.916(4)
1.901(4)
2.206(3)
2.172(3)
2.134(3)
0.73(6)

Re-Np

1.898(3)
1.921(3)
1.900(3)
2.214(2)
2.171(2)
2.1324(19)
0.73(3)



Supporting Information for Computational theory selection

Various studies use different density functional theory and basis sets.!-3 To select the most suitable
theory, some of the mentioned theories in the articles are used for geometry optimization of the fluorine
derivative of the complex (test). The list of theory and basis set used for ground state optimization: 1.
B3LYP/LANL2DZ(Re)/6-311++G(d,p), 2. B3PWO91/SDDALL(Re)/6-31G(d,p), 3.
PBEO/SDDALL(Re)/6-31G(d,p), 4. MOO6L/SDDALL(Re)/ 6-31G(d,p), 5. MOG6L/LANL2DZ(Re)/6-
311++G(d,p), and 6. B3LYP/SDD(Re)/6-311G*. “Theory/basis set 1 (Re)/basis set 2” indicates that
particular basis set 1 is used only for Re atoms, and other atoms are computed by the next-mentioned basis
set 2. In all the calculations, empirical dispersion is added as GD3BJ. All the calculations have been carried
out using Gaussianl6 software.* The bond distance between the Re atom and the six bonded atoms is
measured from the optimized geometry. Then it is compared with fluorine derivative XRD structure. The
difference in average bond distance between the XRD result and the optimized result is calculated. The
least difference of the optimized geometry result is taken for further computational analysis. Here, it is
evident from Table S4 that the B3PW91/SDDALL(Re)/6-31G(d,p) combination is best for the
computational study. After optimizing at B3PW91/SDDALL(Re)/6-31G(d,p) level, the obtained geometry

was used for the force field parametrization.
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Table S4. Bond distance, average bond distance, and difference of calculated bond distance from the

experiment. All the values reported here are in A.

Calculated (C)
Bond | XPeriment Fparyp B3PW91 PBE0 MO6L MO6L B3LYP
(E) LANL2DZ(Re)6- | SDDALL(Re)6- | SDDALL(Re)6- | SDDALL(Re) | LANL2DZ(Re) | SDD(Re)
311++G(d,p) 31G(d,p) 31G(d,p) 6-31G(d,p) | 6-311++G(d,p) | 6-311G*
Rel-04 213 2.15 2.13 2.14 2.16 2.15 2.16
Rel-N3 223 223 222 2.23 227 228 228
Rel-N4 2.17 2.20 2.18 2.19 222 222 223
Rel-C23 1.92 1.92 1.92 1.93 1.91 1.93 1.94
Rel-C24 191 1.91 1.92 1.92 191 1.92 1.93
Rel-C22 1.92 1.93 1.93 1.93 1.92 1.93 1.94
Average
bond 2.05 2.06 2.05 2.06 2.07 2.07 2.08
distance
E-C 0.01 0.00 0.01 0.02 0.03 0.02

Supporting Information for molecular docking studies

The docking studies for the metal complexes binding with various DNA models, based on binding
method (Minor groove binding — 1BNA, Major groove binding — IBWG, Covalent cross linking — 1AUS,
and Intercalation — 3FT6 and 1Z3F), is carried out in AutoDock.> The DNA structures are acquired from
Protein Data Bank.° Initially, the undesirable water molecules and ligands are eliminated from the structure,
then polar hydrogens are added to it. The interaction of complex-DNA explored with grid box (IBNA — 60
A x58 A x94 A, IBWG — 48 A x50 A x90 A, 1AUS5 —40 A x52 A x40 A, 3FT6 — 40 A x40 A x50 A, and
1Z3F — 48 A x44 A x52 A) and 0.5 grid resolution. For Re-F docking with 1Z3F, grid box of 52 A x40 A
x46 A with 0.375 grid resolution is preferred to get the intercalation mode of binding. The complexes have
two torsional degrees of freedom except the Re-Me complex (torsion = 1). Docking is analyzed with 500
conformers and population size of 1500. Genetic algorithm preferred with parameters such as number of
generations (27,000), mutation rate (0.02) and crossover rate (0.8). Additionally, each calculation is
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repeated for five times to verify the obtained results consistency towards the conformer. Finally, the best
conformer is selected based on the highest binding energy and the total number of hydrogen bonds and
the binding energy value is given in Table S5. Further, BIOVIA Discovery Studio Visualizer is used for

visualizing the best interactive conformer to the DNA.

Table S5 Metal complexes binding energy [kcal/mol] with various DNA models

DNA Complexes
Re-F Re-Cl Re-Br Re-Me Re-Np
IBNA -8.69 -9.75 -10.21 -9.52 -10.50
IBWG -7.55 -8.34 -8.56 -8.24 -8.78
1AUS -6.18 -6.41 -6.69 -6.62 -6.89
3FT6 -7.80 -8.00 -8.13 -8.31 -8.56
1Z3F -7.17 -8.30 -8.44 -8.59 -8.41

Supporting Information for molecular dynamics simulations

To carry out the molecular dynamics (MD) simulations, the force fields for the prepared complexes are
required. However, the complexes are new and the force fields are not available. Hence, we parameterised

the force fields for the prepared complexes. The details are provided here.

The MD simulations for the complex with 1BNA and 1Z3F is executed in Amber 2022.7 Optimization,
frequency and Merz-Kollman population analysis calculations are performed using same density function
theory and basis set (B3PW91/SDDALL(Re)/6-31G(d,p)) as mentioned earlier. From the output files, the
metal complex is parameterized by easyPARM.® For the DNA, hydrogens are added using web-server
H++.12 Then, the metal complex and DNA added together to get the topology and coordinate files using
tleap with DNA.bscl force field.!” TIP3P solvation model'! induces water molecules around complex and
DNA with buffer distance of 10 A. To neutralize the system, Na* ions are added. First, minimization
calculation is carried out in a restrained constant volume periodic boundary condition with 10,000 steps
and cut off distance of 10.0 A. The system is fixed to be in 500 kcal/mol force constant in minimization
calculation. Then, the second minimization is calculated with unrestraint constant volume periodic
boundary with 2500 steps with same cut off distance as previous minimization. Next, the system is heated
to 300 K over the period of 20 ps in 100000 steps. Also, the DNA and metal complex is restrained with
constant volume boundary condition, 10 kcal/mol force constant and similar cut off distance. The MD

simulation performed for all the complex at 300 K including Langevin forces include by Langevin damping
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of 1 ps!. The simulation is carried out for 100 ps, 10 ns and finally for 600 ns with 50000, 50000000, and
300000000 steps respectively. The time step is set to be 2 fs without any constraints. Trajectory is analyzed
by Cpptraj (AMBER) and Visual Molecular Dynamics software is used for visualization.'> The binding of
metal complex with DNA has been assessed using MM-PBSA method in Amber.!?

B)12

Re-F Re-Cl

0 100 200 300 400 500 600 0 100 200 300 400 SO0 600
Time (ns) Time (ns)

Re-Br

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (ns) Time (ns)

1Z3F Complex I

Re-Np
0 100 200 300 400 500 600

Time (ns)
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Fig. S27 Time evoluation of RMSD of metal complexes-1Z3F A) Re-F, B) Re-Cl, C) Re-Br, D) Re-Me,
and E) Re-Np. The metal complexes are colored in blue for better visualization in the 3D representation.
The inserted snapshot in the plot is taken at 0 ns, 300 ns, and 600 ns respectively. The atoms' colors are represented

as follows: Grey — C, Black — H, Blue — N, Red — O, Cyan — Re, Pale blue — F, Green — CI , and Brown — Br.

Table S6 MMPBSA calculations of Re-F, Re-Cl, Re-Br, Re-Me, and Re-Np with 1Z3F. All values are
reported in kcal/mol.

Complexes Re-F Re-C1 Re-Br Re-Me Re-Np
VDWAALS -20.9 -38.3 -33.7 -35.6 -38.4
EEL -54 —-143 8.5 —6.9 -3.7 Ref
EGB 13.4 27.6 20.8 20.8 19.0 ere
ESURF -1.8 -3.2 -2.7 -3.2 -3.1 nce
AG (gas) -26.3 -52.6 —42.2 —42.7 —42.0 s
AG (solv) 11.5 -24.4 18.1 17.5 15.9 1.
AG (binding) -14.8 -28.2 -24.1 -25.1 26.1
Priy
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