

# Supplementary materials

## Indications of Ferroelectric Behaviour Near Room Temperature in the Organic–Inorganic Hybrid $Q_2\text{CuBr}_4$

Agnieszka Cizman<sup>1</sup>, Dorota A. Kowalska<sup>2</sup>, Paweł Szarek<sup>3</sup>, Wojciech Medycki<sup>4</sup>, Natalia Anna Wójcik<sup>5</sup>, Marek Gusowski<sup>1</sup>, Monika Trzebiatowska<sup>2</sup>, Adam Bartosiewicz<sup>1</sup>, Ludmila Filevskaia<sup>1</sup>, Piotr Staniorowski<sup>5</sup>, Ewelina Jach<sup>1</sup>

<sup>1</sup> Wrocław University of Science and Technology, Department of Experimental Physics, 27 Wybrzeże Wyspiańskiego, 50-370 Wrocław, Poland

<sup>2</sup> Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland

<sup>3</sup> Navi-Chem, Włodarzewska 83/120, Warsaw, Poland

<sup>4</sup> Institute of Molecular Physics, Polish Academy of Science, M. Smoluchowskiego 17, 60-179 Poznań, Poland

<sup>5</sup> Institute of Nanotechnology and Material Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

<sup>6</sup> Institute of Experimental Physics, University of Wrocław, Pl. M. Borna 9, 50204 Wrocław, Poland

## Table content

**Table S1.** Selected hydrogen bond parameters.

**Table S2.** Selected geometric parameters (Å, °) of inorganic polyhedra in  $Q_2\text{CuBr}_4$ .

**Table S3.** Properties of single  $Q_2\text{CuBr}_4$  sub-unit, depending on functional, Jorge-DZP-DKH basis set and scalar relativistic correction. Kohn-Sham energies in Hartree. The  $I - A$  is estimated by finite differences,  $E_{N+1} + E_{N-1} - 2E_N$ , and the  $gap = \min(\epsilon_{LUMO}^{\alpha}, \epsilon_{LUMO}^{\beta}) - \max(\epsilon_{HOMO}^{\alpha}, \epsilon_{HOMO}^{\beta})$ .

**Table S4.** Polarizability,  $\alpha$ , and first hiperpolarizability,  $\beta$ , in atomic units, for single  $Q_2\text{CuBr}_4$  sub-unit, depending on functional, Jorge-DZP-DKH basis set and DKH relativistic correction.

**Table S5.** Dipole moments in Debye for single  $Q_2\text{CuBr}_4$  sub-unit, depending on functional, Jorge-DZP-DKH basis set and DKH relativistic correction.

**Table S6.** Relative energies in eV, of high and low temperature single cell structures with triple- $\zeta$  basis set quality (Jorge-TZP and Jorge-TZP-DKH combined with LC-TPSSTPSS).

**Table S7.** Relative energies of high spin – quintet states for single unit cell structures at different levels of theory.

**Table S8.** The fundamental,  $I - A$ , and optical,  $\epsilon_L - \epsilon_H = \min(\epsilon_{LUMO}^\alpha, \epsilon_{LUMO}^\beta) - \max(\epsilon_{HOMO}^\alpha, \epsilon_{HOMO}^\beta)$ , gaps in eV, at different levels of theory: non-relativistic, relativistic DKH, and DKHSO, for crystallographic unit cell in high spin – quintet, and low spin – antiferromagnetic singlet states.

**Table S9.** Dipole moments in Debye, of unit cell structures. The DKH,  $\sum \mu_i$  are resultant dipole moments of four dipoles of isolated sub-units, of the unit cell, summed together.

**Table S10.** Polarizability,  $\alpha$ , and first hyperpolarizability,  $\beta$ , in atomic units, of unit cell structures. For reference the hyperpolarizability of urea is 37.

**Table S11.** Average chemical shifts in ppm between corresponding atoms in unit cells in high spin quintet state and in low spin antiferromagnetic singlet states.

**Table S12.** The wavenumbers ( $\text{cm}^{-1}$ ) of the observed infrared bands of  $\text{Q}_2\text{CuBr}_4$  at 300 K and their assignment.

## Graph content

**Figure S1.** Comparison of measured powder X-ray diffraction data with calculated pattern

**Figure S2.** The asymmetric unit of the  $\text{Q}_2\text{CuBr}_4$  with atom numbering scheme: (a) ordered phase II at 100 K and (b) phase II at 300 K with disordered Q2 cation (presented in transparent color and with dashed bonds). The N—H $\cdots$ Br bonds are presented as green dashed lines.

**Figure S3.** The view at the  $\text{Q}_2\text{CuBr}_4$  structure along the  $b$ -crystallographic direction in phase II (a) and phase I (b). The Q ions are presented in two different colors to differentiate the Q2 moiety (in pink) from the Q1 (in grey). The disordered cations in (b) are presented with dotted pink lines. For the picture clarity the hydrogen atoms attached to carbon atoms were removed. The N—H $\cdots$ Br bonds are presented as green dashed lines.

**Figure S4.** The volume changes (a) and relative changes of lattice parameters (b) around PT for  $\text{Q}_2\text{CuBr}_4$  derived from X-ray diffraction measurements.

**Figure S5.** The temperature dependence of (a) the third-order conductivity coefficient, (b) the real part of the third-order electric susceptibility coefficient measured at frequency of 1 Hz during heating and cooling.

**Figure S6.** Aligned structures of  $\text{Q}_2\text{CuBr}_4$  sub-unit from 100 K (green), two conformers in 300 K (blue and yellow) and geometries optimized with different functionals (grey).

**Figure S7.** Comparison of relative energies of neutral and charged species of low and high temperature single cell structures, ionization potential,  $IP$ , and electron affinity,  $EA$ , at different levels of theory: non-relativistic and relativistic DKH and DKHSO.

**Figure S8.** The IR spectra of  $\text{Q}_2\text{CuBr}_4$ .

**Table S1.** Selected hydrogen bond parameters.

| Phase (temp.)       | $D-H\cdots A$ | $D-H$ (Å) | $H\cdots A$ (Å) | $D\cdots A$ (Å) | $D-H\cdots A$ (°) |
|---------------------|---------------|-----------|-----------------|-----------------|-------------------|
| Phase II<br>(100 K) | N1—H1···Br2   | 0.98      | 2.45            | 3.359(3)        | 154               |
|                     | N2—H2···Br1   | 0.98      | 2.41            | 3.326(4)        | 155               |
|                     | N3—H3···Br5   | 0.98      | 2.46            | 3.330(4)        | 148               |
|                     | N4—H4···Br6   | 0.98      | 2.45            | 3.338(4)        | 151               |
| Phase I<br>(300 K)  | N1—H1···Br2   | 0.98      | 2.51            | 3.409(5)        | 153               |
|                     | N2—H2···Br1   | 1.00(2)   | 2.43(3)         | 3.363(5)        | 155(5)            |

**Table S2.** Selected geometric parameters (Å, °) of inorganic polyhedra in  $Q_2CuBr_4$ .

| Phase<br>(temp.)    | Bond    | Bond length (Å) | Angle description | Angle value (°) |
|---------------------|---------|-----------------|-------------------|-----------------|
| Phase II<br>(100 K) | Cu1—Br1 | 2.4124(8)       | Br2—Cu1—Br1       | 133.37(3)       |
|                     | Cu1—Br2 | 2.3857(9)       | Br2—Cu1—Br3       | 98.64(3)        |
|                     | Cu1—Br3 | 2.3986(8)       | Br3—Cu1—Br1       | 98.49(3)        |
|                     | Cu1—Br4 | 2.3699(8)       | Br4—Cu1—Br1       | 99.04(2)        |
|                     | Cu2—Br5 | 2.3996(8)       | Br4—Cu1—Br2       | 101.57(3)       |
|                     | Cu2—Br6 | 2.3794(8)       | Br4—Cu1—Br3       | 131.00(3)       |
|                     | Cu2—Br7 | 2.4115(8)       | Br5—Cu2—Br7       | 98.79(3)        |
|                     | Cu2—Br8 | 2.3626(8)       | Br6—Cu2—Br5       | 133.65(3)       |
|                     |         |                 | Br6—Cu2—Br7       | 100.25(3)       |
|                     |         |                 | Br8—Cu2—Br5       | 99.27(3)        |
| Phase I<br>(300 K)  |         |                 | Br8—Cu2—Br6       | 100.53(3)       |
|                     |         |                 | Br8—Cu2—Br7       | 129.21(3)       |
|                     | Cu1—Br1 | 2.3998(18)      | Br2—Cu1—Br1       | 132.68(3)       |
|                     | Cu1—Br2 | 2.3815(18)      | Br2—Cu1—Br3       | 99.65(3)        |
|                     | Cu1—Br3 | 2.3935(17)      | Br3—Cu1—Br1       | 99.06(3)        |
| (300 K)             | Cu1—Br4 | 2.3602(18)      | Br4—Cu1—Br1       | 99.02(3)        |
|                     |         |                 | Br4—Cu1—Br2       | 101.76(3)       |
|                     |         |                 | Br4—Cu1—Br3       | 129.38(4)       |

**Table S3.** Properties of single  $Q_2CuBr_4$  sub-unit, depending on functional, Jorge-DZP-DKH basis set and scalar relativistic correction. Kohn-Sham energies in Hartree. The vertical ionization energy,  $I$ ,

vertical electron affinity,  $A$ ,  $I - A$  estimated by finite differences,  $E_{N+1} + E_{N-1} - 2E_N$ , and the  $gap = \min(\epsilon_{LUMO}^\alpha, \epsilon_{LUMO}^\beta) - \max(\epsilon_{HOMO}^\alpha, \epsilon_{HOMO}^\beta)$ .

| Structure          | $E$ [eV] | $I$ [eV] | $A$ [eV] | $\alpha HOMO$ | $\alpha LUMO$ | $\beta HOMO$ | $\beta LUMO$ | $I - A$ | $gap$ [eV] |
|--------------------|----------|----------|----------|---------------|---------------|--------------|--------------|---------|------------|
| <b>B97D</b>        |          |          |          |               |               |              |              |         |            |
| optimized          | 0.000    | 6.802    | 1.297    | -0.1705       | -0.0110       | -0.1650      | -0.1485      | 5.506   | 0.450      |
| 100K               | 11.328   | 5.885    | -0.028   | -0.1295       | 0.0072        | -0.1264      | -0.1051      | 5.840   | 0.580      |
| 300K v1            | 11.926   | 5.885    | -0.086   | -0.1280       | 0.0060        | -0.1240      | -0.1035      | 5.891   | 0.559      |
| 300K v2            | 11.958   | 5.867    | -0.088   | -0.1274       | 0.0061        | -0.1233      | -0.1028      | 5.876   | 0.559      |
| <b>M06</b>         |          |          |          |               |               |              |              |         |            |
| optimized          | 0.000    | 7.121    | 1.369    | -0.2145       | 0.0150        | -0.2116      | -0.1119      | 5.751   | 2.713      |
| 100K               | 10.683   | 6.326    | 0.178    | -0.1823       | 0.0305        | -0.1789      | -0.0742      | 6.077   | 2.848      |
| 300K v1            | 11.095   | 6.294    | 0.118    | -0.1812       | 0.0289        | -0.1781      | -0.0725      | 6.104   | 2.872      |
| 300K v2            | 11.157   | 6.277    | 0.094    | -0.1805       | 0.0289        | -0.1773      | -0.0717      | 6.109   | 2.874      |
| <b>M06L</b>        |          |          |          |               |               |              |              |         |            |
| optimized          | 0.000    | 6.773    | 1.061    | -0.1763       | 0.0117        | -0.1678      | -0.1403      | 5.713   | 0.749      |
| 100K               | 10.343   | 5.895    | -0.326   | -0.1366       | 0.0304        | -0.1324      | -0.0961      | 6.221   | 0.986      |
| 300K v1            | 10.788   | 5.900    | -0.388   | -0.1352       | 0.0327        | -0.1302      | -0.0944      | 6.288   | 0.972      |
| 300K v2            | 10.846   | 5.838    | -0.407   | -0.1346       | 0.0324        | -0.1295      | -0.0937      | 6.246   | 0.973      |
| <b>LC-TPSSTPSS</b> |          |          |          |               |               |              |              |         |            |
| optimized          | 0.000    | 8.184    | 1.611    | -0.3271       | 0.0984        | -0.3236      | -0.0359      | 6.573   | 7.828      |
| 100K               | 10.417   | 7.430    | 0.623    | -0.2983       | 0.1093        | -0.2933      | -0.0053      | 6.806   | 7.837      |
| 300K v1            | 10.626   | 7.400    | 0.553    | -0.2974       | 0.1072        | -0.2925      | -0.0030      | 6.847   | 7.880      |
| 300K v2            | 10.708   | 7.382    | 0.531    | -0.2967       | 0.1073        | -0.2918      | -0.0022      | 6.851   | 7.879      |
| <b>wB97XD</b>      |          |          |          |               |               |              |              |         |            |
| optimized          | 0.000    | 7.602    | 1.340    | -0.2869       | 0.0831        | -0.2811      | -0.0533      | 6.263   | 6.198      |
| 100K               | 10.521   | 6.795    | 0.138    | -0.2520       | 0.1006        | -0.2473      | -0.0130      | 6.657   | 6.377      |
| 300K v1            | 10.981   | 6.759    | 0.072    | -0.2513       | 0.0988        | -0.2466      | -0.0109      | 6.688   | 6.414      |
| 300K v2            | 11.037   | 6.742    | 0.049    | -0.2506       | 0.0988        | -0.2459      | -0.0102      | 6.693   | 6.415      |

**Table S4.** Polarizability,  $\alpha$ , and first hiperpolarizability,  $\beta$ , in atomic units, for single  $Q_2CuBr_4$  sub-unit, depending on functional, Jorge-DZP-DKH basis set and DKH relativistic correction.

| Structure   | $\alpha$ | $\beta_x$ | $\beta_y$ | $\beta_z$ | $\beta_{\parallel}$ | $\beta_{vec}$ | $\cos\theta$ | $\beta_{tot}$ |
|-------------|----------|-----------|-----------|-----------|---------------------|---------------|--------------|---------------|
| <b>B97D</b> |          |           |           |           |                     |               |              |               |
| opt         | 280.70   | -1368.3   | 255.0     | 1477.2    | 1217.8              | 1598.3        | 0.7875       | 2029.6        |
| 100K        | 246.26   | -1534.1   | -815.0    | 1067.5    | 1223.4              | 1955.5        | 0.9591       | 2038.9        |
| 300K v1     | 244.57   | -1545.7   | -890.9    | 1100.2    | 1257.6              | 2009.2        | 0.9585       | 2096.1        |
| 300K v2     | 244.67   | -1547.6   | -899.4    | 1038.3    | 1241.6              | 1997.1        | 0.9651       | 2069.3        |
| <b>M06</b>  |          |           |           |           |                     |               |              |               |
| opt         | 264.50   | -971.5    | 478.3     | 1153.6    | 949.3               | 1080.6        | 0.6830       | 1582.2        |
| 100K        | 236.45   | -1014.8   | -589.4    | 1103.8    | 966.6               | 1425.4        | 0.8848       | 1611.1        |
| 300K v1     | 234.12   | -976.6    | -642.4    | 1146.7    | 982.5               | 1432.7        | 0.8750       | 1637.5        |
| 300K v2     | 234.02   | -968.4    | -630.2    | 1092.1    | 953.9               | 1408.5        | 0.8859       | 1589.8        |
| <b>M06L</b> |          |           |           |           |                     |               |              |               |
| opt         | 266.70   | -1214.8   | 513.1     | 1205.1    | 1071.9              | 1261.1        | 0.7059       | 1786.5        |

|                    |        |         |        |        |        |        |        |        |
|--------------------|--------|---------|--------|--------|--------|--------|--------|--------|
| 100K               | 232.08 | -1030.1 | -675.0 | 1137.3 | 1005.8 | 1479.2 | 0.8824 | 1676.3 |
| 300K v1            | 230.02 | -1026.4 | -739.5 | 1173.6 | 1035.3 | 1518.9 | 0.8803 | 1725.5 |
| 300K v2            | 229.92 | -1009.8 | -725.8 | 1096.9 | 994.9  | 1479.7 | 0.8923 | 1658.2 |
| <b>LC-TPSSTPSS</b> |        |         |        |        |        |        |        |        |
| opt                | 234.28 | -1164.8 | -67.0  | 552.6  | 774.6  | 1225.9 | 0.9495 | 1291.0 |
| 100K               | 213.90 | -1242.9 | -380.8 | 697.2  | 885.1  | 1439.7 | 0.9760 | 1475.1 |
| 300K v1            | 211.53 | -1165.8 | -366.0 | 707.0  | 847.0  | 1373.8 | 0.9731 | 1411.7 |
| 300K v2            | 211.68 | -1168.5 | -339.8 | 678.8  | 836.0  | 1360.9 | 0.9767 | 1393.4 |
| <b>wB97XD</b>      |        |         |        |        |        |        |        |        |
| opt                | 251.08 | -1119.6 | 256.0  | 964.9  | 900.0  | 1253.6 | 0.8358 | 1500.0 |
| 100K               | 222.78 | -1164.9 | -507.5 | 826.0  | 909.3  | 1449.4 | 0.9564 | 1515.5 |
| 300K v1            | 220.52 | -1133.3 | -514.1 | 827.9  | 896.8  | 1430.2 | 0.9569 | 1494.7 |
| 300K v2            | 220.62 | -1130.0 | -494.5 | 790.7  | 879.1  | 1411.5 | 0.9634 | 1465.1 |

**Table S5.** Dipole moments in Debye for single  $\text{Q}_2\text{CuBr}_4$  sub-unit, depending on functional, Jorge-DZP-DKH basis set and DKH relativistic correction.

| <i>Structure</i>   | $\mu_x$ | $\mu_y$ | $\mu_z$ | $\mu$ | $\frac{\mu_x}{\mu}$ | $\frac{\mu_y}{\mu}$ | $\frac{\mu_z}{\mu}$ |
|--------------------|---------|---------|---------|-------|---------------------|---------------------|---------------------|
| <b>B97D</b>        |         |         |         |       |                     |                     |                     |
| opt                | -8.80   | -3.12   | 3.00    | 9.81  | -89.7%              | -31.8%              | 30.6%               |
| 100K               | -13.24  | -5.17   | 4.15    | 14.80 | -89.4%              | -34.9%              | 28.0%               |
| 300K v1            | -12.96  | -4.98   | 4.30    | 14.54 | -89.2%              | -34.3%              | 29.6%               |
| 300K v2            | -13.10  | -4.96   | 4.45    | 14.70 | -89.1%              | -33.7%              | 30.3%               |
| <b>M06</b>         |         |         |         |       |                     |                     |                     |
| opt                | -9.25   | -3.03   | 3.01    | 10.18 | -90.8%              | -29.7%              | 29.5%               |
| 100K               | -13.57  | -5.34   | 4.31    | 15.21 | -89.2%              | -35.1%              | 28.3%               |
| 300K v1            | -13.29  | -5.16   | 4.45    | 14.94 | -89.0%              | -34.5%              | 29.8%               |
| 300K v2            | -13.45  | -5.13   | 4.60    | 15.11 | -89.0%              | -33.9%              | 30.5%               |
| <b>M06L</b>        |         |         |         |       |                     |                     |                     |
| opt                | -9.54   | -3.66   | 3.13    | 10.69 | -89.3%              | -34.3%              | 29.3%               |
| 100K               | -13.78  | -5.40   | 4.39    | 15.44 | -89.3%              | -35.0%              | 28.5%               |
| 300K v1            | -13.51  | -5.21   | 4.54    | 15.18 | -89.0%              | -34.3%              | 29.9%               |
| 300K v2            | -13.65  | -5.19   | 4.69    | 15.34 | -89.0%              | -33.8%              | 30.6%               |
| <b>LC-TPSSTPSS</b> |         |         |         |       |                     |                     |                     |
| opt                | -9.39   | -3.60   | 3.14    | 10.53 | -89.1%              | -34.2%              | 29.9%               |
| 100K               | -14.15  | -5.50   | 4.42    | 15.82 | -89.5%              | -34.8%              | 28.0%               |
| 300K v1            | -13.87  | -5.28   | 4.57    | 15.53 | -89.3%              | -34.0%              | 29.4%               |
| 300K v2            | -14.03  | -5.25   | 4.69    | 15.70 | -89.4%              | -33.4%              | 29.9%               |
| <b>wB97XD</b>      |         |         |         |       |                     |                     |                     |
| opt                | -9.78   | -2.81   | 3.30    | 10.69 | -91.4%              | -26.3%              | 30.8%               |
| 100K               | -13.92  | -5.41   | 4.33    | 15.55 | -89.5%              | -34.8%              | 27.8%               |
| 300K v1            | -13.64  | -5.20   | 4.48    | 15.27 | -89.3%              | -34.0%              | 29.3%               |
| 300K v2            | -13.80  | -5.17   | 4.61    | 15.44 | -89.4%              | -33.5%              | 29.9%               |

**Table S6.** Relative energies in eV, of high and low temperature single cell structures with triple- $\zeta$  basis set quality (Jorge-TZP and Jorge-TZP-DKH combined with LC-TPSSTPSS).

|         | non-relat. | DKH   | DKHSO |
|---------|------------|-------|-------|
| 100K    | 0.000      | 0.000 | 0.000 |
| 300K v1 | 1.043      | 1.030 | 1.030 |
| 300K v2 | 1.318      | 1.305 | 1.305 |

**Table S7.** Relative energies of high spin – quintet states for single unit cell structures at different levels of theory (Jorge-DZP and Jorge-DZP-DKH combined with LC-TPSSTPSS).

|            | $E_{N+1}$ | $E_N$ | $E_{N-1}$ | $I$   | $A$   |
|------------|-----------|-------|-----------|-------|-------|
| 100K       |           |       |           |       |       |
| non-relat. | -1.573    | 0.000 | 7.319     | 7.319 | 1.573 |
| DKH        | -1.357    | 0.000 | 7.530     | 7.530 | 1.357 |
| DKHSO      | -1.357    | 0.000 | 7.528     | 7.528 | 1.357 |
| 300K v1    |           |       |           |       |       |
| non-relat. | -0.364    | 1.170 | 8.466     | 7.296 | 1.534 |
| DKH        | -0.171    | 1.121 | 8.334     | 7.213 | 1.293 |
| DKHSO      | -0.171    | 1.121 | 8.333     | 7.211 | 1.293 |
| 300K v2    |           |       |           |       |       |
| non-relat. | -0.057    | 1.454 | 8.752     | 7.298 | 1.511 |
| DKH        | 0.135     | 1.405 | 8.963     | 7.557 | 1.271 |
| DKHSO      | 0.135     | 1.405 | 8.961     | 7.556 | 1.271 |

**Table S8.** The fundamental,  $I - A$ , and optical,  $\epsilon_L - \epsilon_H = \min(\epsilon_{LUMO}^\alpha, \epsilon_{LUMO}^\beta) - \max(\epsilon_{HOMO}^\alpha, \epsilon_{HOMO}^\beta)$ , gaps in eV, at different levels of theory: non-relativistic, relativistic DKH, and DKHSO, for crystallographic unit cell in high spin – quintet, and low spin – antiferromagnetic singlet states.

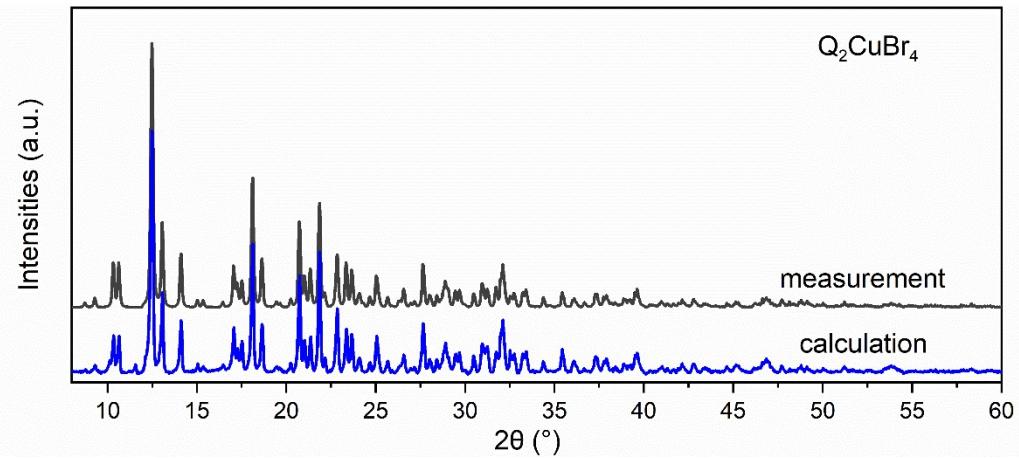
|           |       | Non-relativistic |                           | DKH     |                           | DKHSO   |                           |
|-----------|-------|------------------|---------------------------|---------|---------------------------|---------|---------------------------|
|           |       | $I - A$          | $\epsilon_L - \epsilon_H$ | $I - A$ | $\epsilon_L - \epsilon_H$ | $I - A$ | $\epsilon_L - \epsilon_H$ |
| 100K      |       |                  |                           |         |                           |         |                           |
| high spin | 5.746 | 7.143            | 6.173                     | 7.306   | 6.171                     | 7.305   |                           |
| low spin  | —     | —                | 5.897                     | 7.306   | —                         | —       |                           |
| 300K v1   |       |                  |                           |         |                           |         |                           |
| high spin | 5.763 | 7.157            | 5.920                     | 7.329   | 5.918                     | 7.328   |                           |
| low spin  | —     | —                | 5.920                     | 7.329   | —                         | —       |                           |
| 300K v2   |       |                  |                           |         |                           |         |                           |
| high spin | 5.786 | 7.184            | 6.286                     | 7.354   | 6.285                     | 7.353   |                           |
| low spin  | —     | —                | 5.943                     | 7.354   | —                         | —       |                           |

**Table S9.** Dipole moments in Debye, of unit cell structures. The DKH,  $\sum \mu_i$  are resultant dipole moments of four dipoles of isolated sub-units, of the unit cell, summed together.

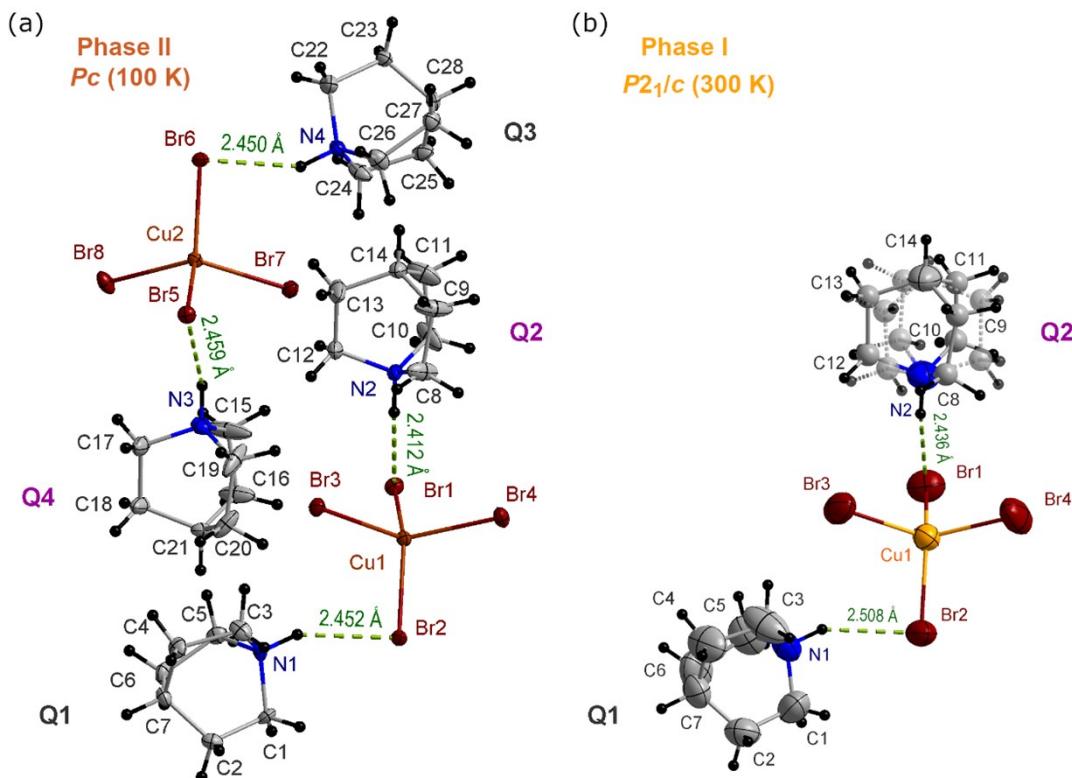
| Structure                           | $\mu_x$ | $\mu_y$ | $\mu_z$ | $\mu$ |
|-------------------------------------|---------|---------|---------|-------|
| <i>non-relativistic</i>             |         |         |         |       |
| 100K                                | 0.347   | -1.47   | 1.07    | 1.86  |
| 300K v1                             | 1.11    | -1.65   | 1.08    | 2.26  |
| 300K v2                             | 1.15    | -1.69   | 1.05    | 2.29  |
| <i>DKH</i>                          |         |         |         |       |
| 100K                                | 0.361   | -1.49   | 1.08    | 1.88  |
| 300K v1                             | 1.11    | -1.66   | 1.08    | 2.27  |
| 300K v2                             | 1.15    | -1.70   | 1.04    | 2.30  |
| <i>DKHSO</i>                        |         |         |         |       |
| 100K                                | 0.361   | -1.49   | 1.08    | 1.88  |
| 300K v1                             | 1.11    | -1.66   | 1.08    | 2.27  |
| 300K v2                             | 1.15    | -1.70   | 1.04    | 2.30  |
| <i>DKH, <math>\sum \mu_i</math></i> |         |         |         |       |
| 100K                                | -0.910  | 0.000   | -0.268  | 0.948 |
| 300K v1                             | 0.000   | 0.000   | 0.000   | 0.000 |
| 300K v2                             | 0.000   | 0.000   | 0.000   | 0.000 |

**Table S10.** Polarizability,  $\alpha$ , and first hyperpolarizability,  $\beta$ , in atomic units, of unit cell structures. For reference the hyperpolarizability of urea is 37.

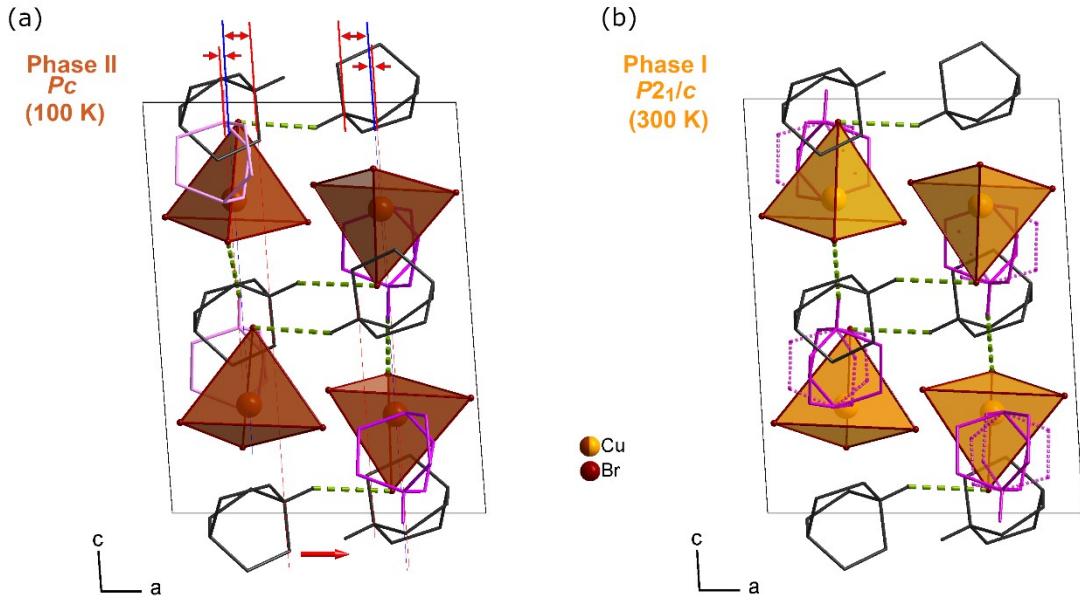
| Structure               | $\alpha$ | $\beta_x$ | $\beta_y$ | $\beta_z$ | $\beta_{\parallel}$ | $\beta_{vec}$ | $\cos\theta$ | $\beta_{tot}$ |
|-------------------------|----------|-----------|-----------|-----------|---------------------|---------------|--------------|---------------|
| <i>non-relativistic</i> |          |           |           |           |                     |               |              |               |
| 100K                    | 881.24   | 219.55    | 691.91    | -37.56    | 436.13              | -530.17       | -0.7294      | 726.88        |
| 300K v1                 | 868.31   | 443.43    | 604.66    | -66.74    | 451.68              | -255.24       | -0.3391      | 752.79        |
| 300K v2                 | 869.63   | 444.02    | 628.88    | -43.18    | 462.63              | -259.83       | -0.3370      | 771.05        |
| <i>DKH</i>              |          |           |           |           |                     |               |              |               |
| 100K                    | 877.12   | 182.32    | 561.03    | -101.78   | 359.17              | -470.03       | -0.7852      | 598.62        |
| 300K v1                 | 864.26   | 346.36    | 526.44    | -128.94   | 385.93              | -276.59       | -0.4300      | 643.22        |
| 300K v2                 | 865.57   | 348.26    | 554.79    | -110.70   | 398.60              | -285.70       | -0.4301      | 664.33        |
| <i>DKHSO</i>            |          |           |           |           |                     |               |              |               |
| 100K                    | 877.35   | 182.27    | 561.65    | -101.73   | 359.51              | -470.50       | -0.7852      | 599.18        |
| 300K v1                 | 864.49   | 346.74    | 526.75    | -128.74   | 386.18              | -276.53       | -0.4296      | 643.64        |
| 300K v2                 | 865.80   | 348.67    | 555.11    | -110.47   | 398.86              | -285.62       | -0.4297      | 664.77        |


**Table S11.** Average chemical shifts in ppm between corresponding atoms in unit cells in high spin quintet state and in low spin antiferromagnetic singlet states.

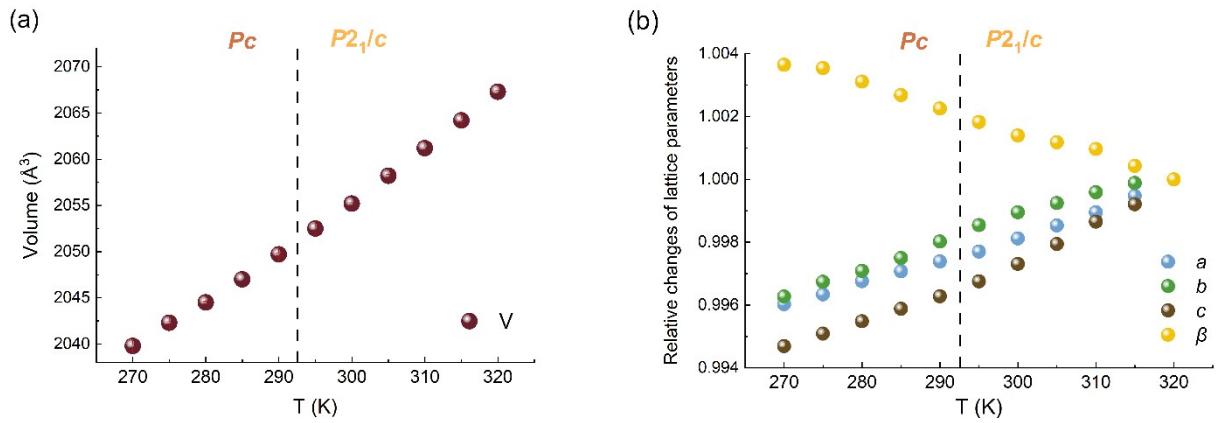
|           | 100K   | 300K v1 | 300K v2 |
|-----------|--------|---------|---------|
| <b>Br</b> | 13.54  | 12.48   | 12.56   |
| <b>Cu</b> | -10.58 | -10.86  | -10.82  |
| <b>N</b>  | 0.159  | 0.155   | 0.151   |
| <b>C</b>  | 0.130  | 0.122   | 0.124   |
| <b>H</b>  | 0.053  | 0.052   | 0.052   |


**Table S12.** The wavenumbers ( $\text{cm}^{-1}$ ) of the observed infrared bands of  $\text{Q}_2\text{CuBr}_4$  at 300 K and their assignment.

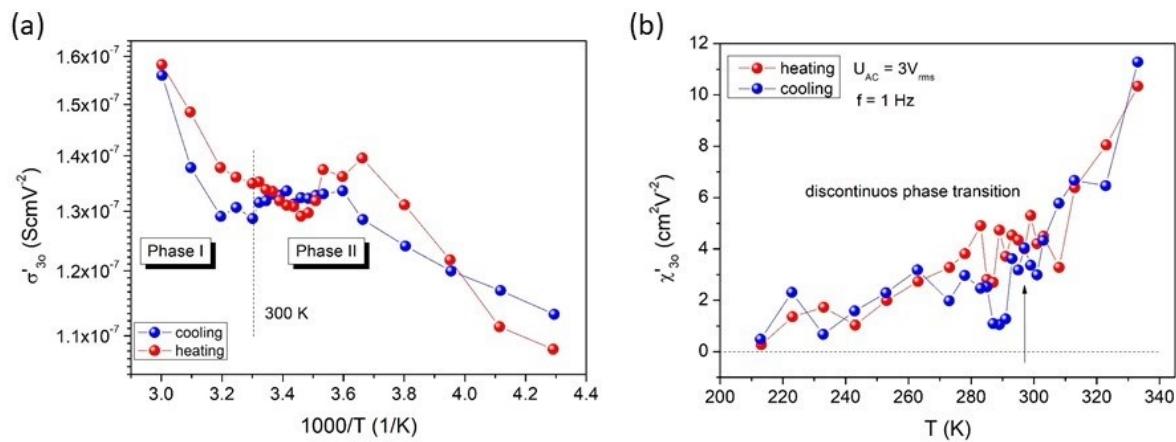
| IR     | Assignment                                                 |
|--------|------------------------------------------------------------|
| 3060vs | $\nu\text{NH}$ $\nu\text{CH}$ $\nu_{\text{as}}\text{CH}_2$ |
| 2964sh | $\nu\text{NH}$ $\nu_{\text{as}}\text{CH}_2$                |
| 2957s  | $\nu_{\text{as}}\text{CH}_2$                               |
| 2946s  | $\nu_{\text{as}}\text{CH}_2$ $\nu_{\text{s}}\text{CH}_2$   |
| 2901w  | $\nu_{\text{s}}\text{CH}_2$                                |
| 2884m  | $\nu_{\text{s}}\text{CH}_2$                                |
| 2829m  | $\nu_{\text{as}}\text{CH}_2$ $\nu_{\text{s}}\text{CH}_2$   |
| 2752vw | overtone                                                   |
| 2679w  | combination                                                |
| 2608w  | combination                                                |
| 1628vw | $\gamma\text{NH}$                                          |
| 1494m  | $\delta\text{CH}_2$                                        |
| 1488sh | $\delta\text{CH}_2$                                        |
| 1464s  | $\delta\text{CH}_2$                                        |
| 1422s  | $\gamma\text{NH}$ $\delta\text{CH}_2$                      |
| 1396s  | $\gamma\text{NH}$ $\delta\text{CH}_2$                      |
| 1384m  | $\delta\text{CH}_2$                                        |
| 1342w  | $\omega\text{CH}_2$                                        |
| 1314m  | $\gamma\text{CH}$ $\omega\text{CH}_2$                      |
| 1294w  | $\omega\text{CH}_2$                                        |
| 1265vw | $\tau\text{CH}_2$                                          |
| 1254vw | $\tau\text{CH}_2$                                          |
| 1241vw | $\tau\text{CH}_2$                                          |
| 1189w  | $\nu_{\text{as}}\text{CNC}$ $\nu_{\text{as}}\text{CCC}$    |
| 1169vw | $\nu_{\text{as}}\text{CNC}$ $\nu_{\text{as}}\text{CCC}$    |
| 1118w  | $\nu_{\text{s}}\text{CNC}$ $\nu_{\text{s}}\text{CCC}$      |
| 1039m  | $\nu_{\text{s}}\text{CNC}$ $\nu_{\text{s}}\text{CCC}$      |
| 1031sh | $\tau\text{CH}_2$                                          |
| 965m   | $\tau\text{CH}_2$                                          |
| 883w   | $\gamma\text{NH}$                                          |
| 839w   | $\gamma\text{NH}$                                          |
| 809w   | $\gamma\text{NH}$                                          |


|       |              |              |
|-------|--------------|--------------|
| 786vw | $\nu_s$ CNC  | $\nu_s$ CCC  |
| 775vw | $\nu_s$ CNC  | $\nu_s$ CCC  |
| 613w  | $\delta$ CNC | $\delta$ CCC |

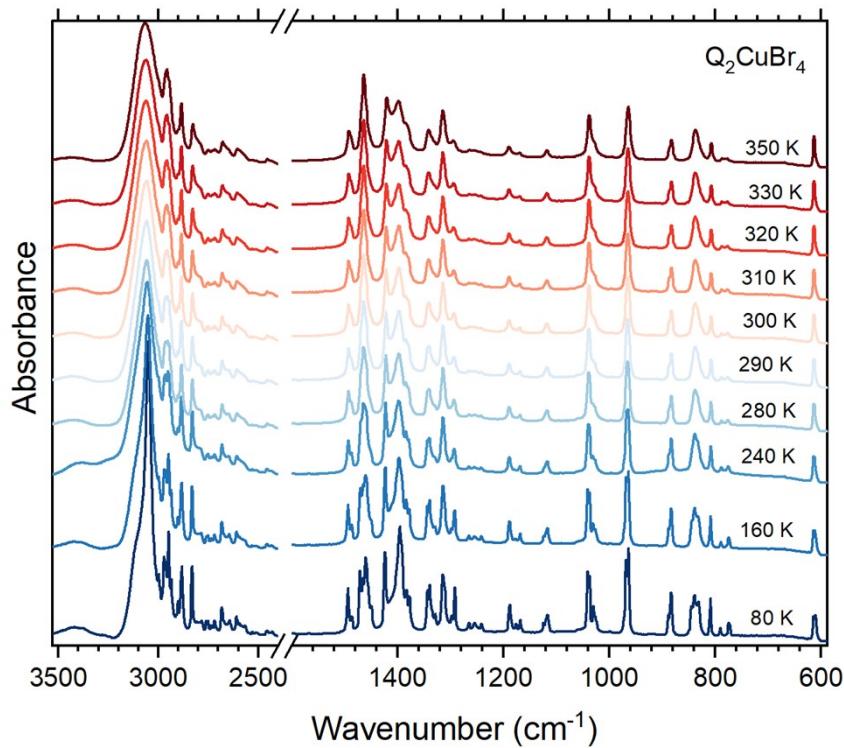



**Figure S1.** Comparison of measured powder X-ray diffraction data with calculated pattern.

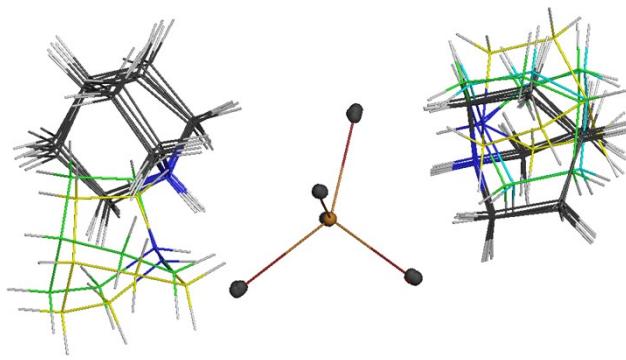



**Figure S2.** The asymmetric unit of the  $Q_2\text{CuBr}_4$  with atom numbering scheme: (a) ordered phase II at 100 K and (b) phase II at 300 K with disordered Q2 cation (presented in transparent color and with dashed bonds). The N—H $\cdots$ Br bonds are presented as green dashed lines.

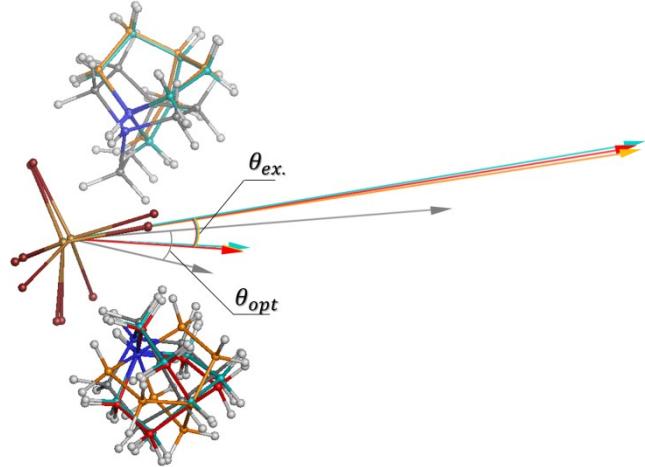



**Figure S3.** The view at the  $\text{Q}_2\text{CuBr}_4$  structure along the  $b$ -crystallographic direction in phase II (a), showing in a schematic way ferroelectric displacement in the  $a$ -crystallographic direction, and phase I (b). The  $\text{Q}$  ions are presented in two different colors to differentiate the  $\text{Q}_2$  moiety (in pink) from the  $\text{Q}_1$  (in grey). The disordered cations in (b) are presented with dotted pink lines. For the picture clarity the hydrogen atoms attached to carbon atoms were removed. The  $\text{N}—\text{H} \cdots \text{Br}$  bonds are presented as green dashed lines.

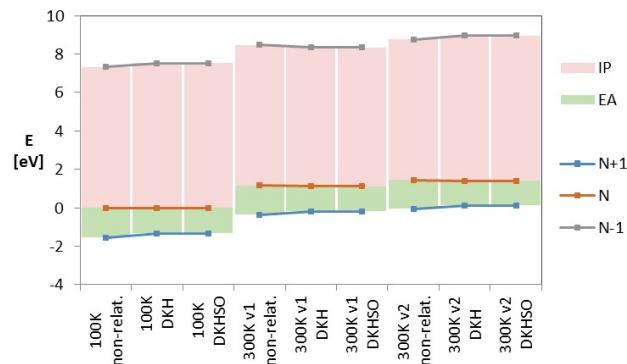



**Figure S4.** The volume changes (a) and relative changes of lattice parameters (b) around PT for  $\text{Q}_2\text{CuBr}_4$  derived from X-ray diffraction measurements.

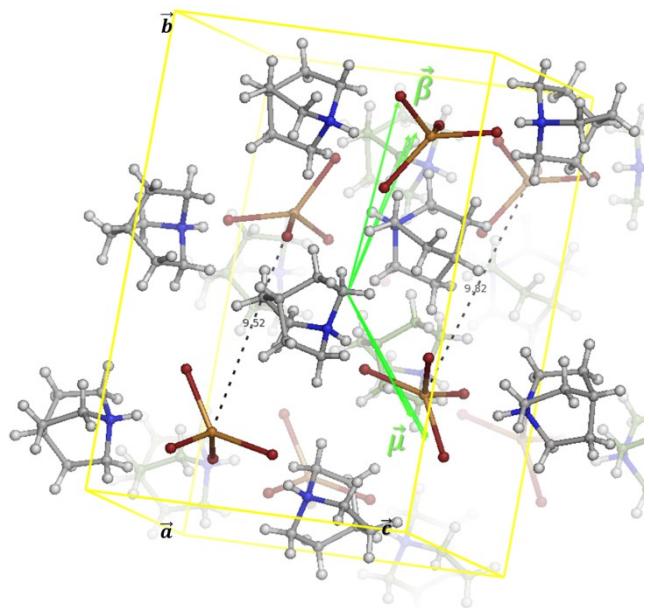



**Figure S5.** The temperature dependence of (a) the third-order conductivity coefficient and (b) the real part of the third-order electric susceptibility coefficient measured at frequency of 1 Hz during heating and cooling.

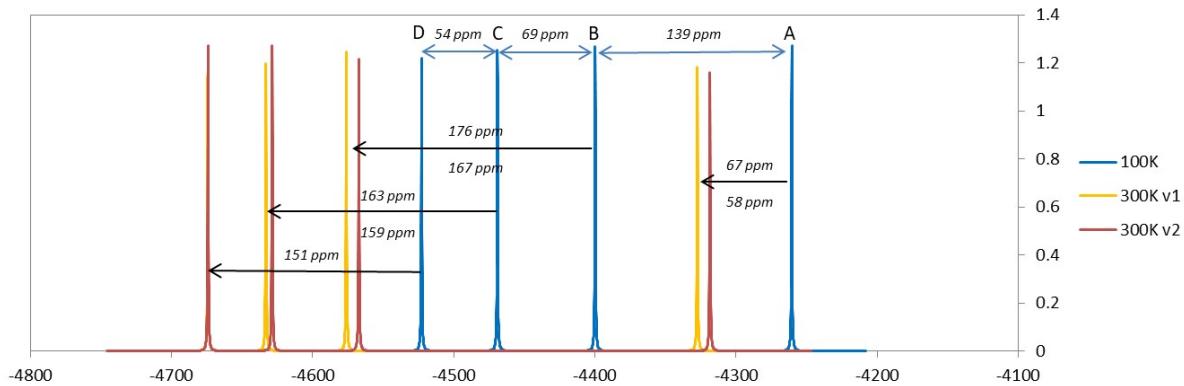



**Figure S6.** The IR spectra of  $\text{Q}_2\text{CuBr}_4$ .

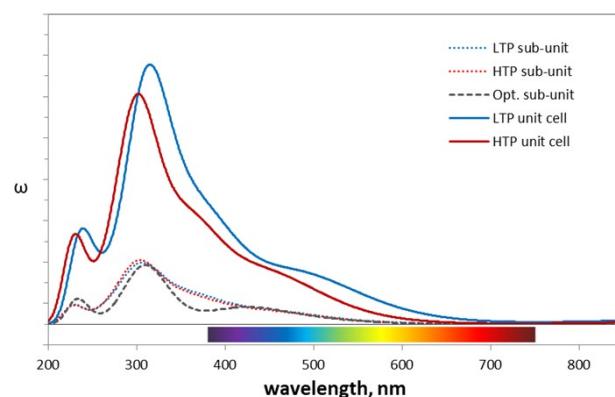



**Figure S7.** Aligned structures of  $\text{Q}_2\text{CuBr}_4$  sub-units from 100 K (green), two conformers in 300 K (blue and yellow) and geometries optimized with different functionals (grey).

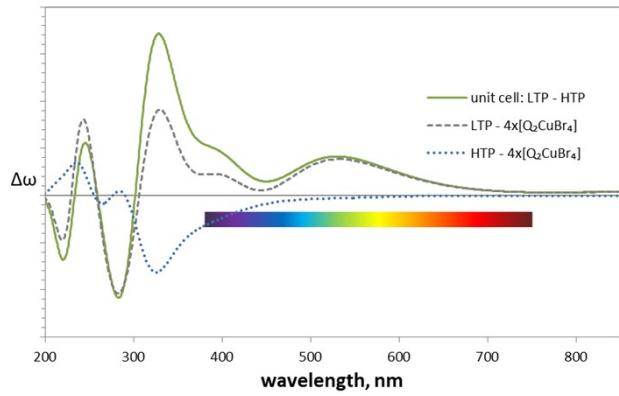



**Figure S8.** Orientation of electric dipole moment (longer arrows) and first order hyperpolarizability (short arrows) in LTP (blue), HTP (red, orange) and optimized (grey) structures aligned wrt Cu, N, N atoms.

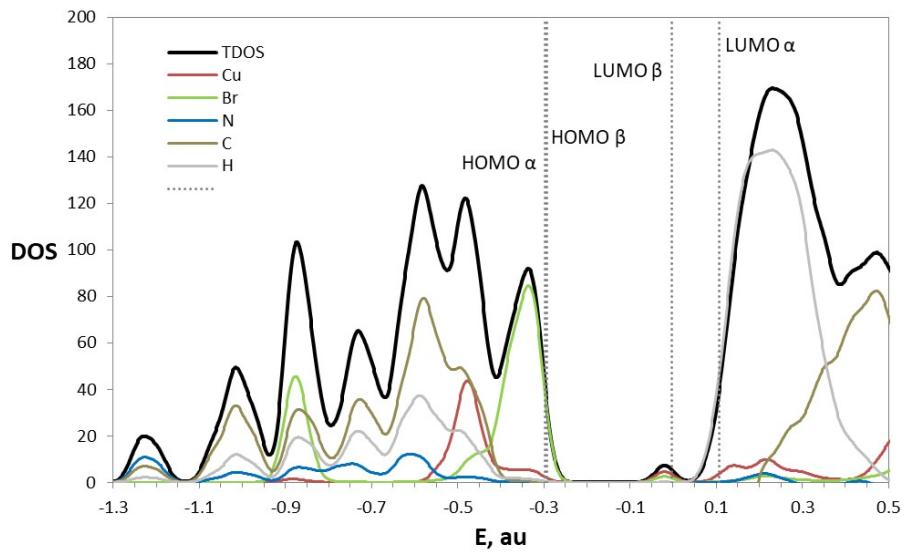



**Figure S9.** Comparison of relative energies of neutral and charged species for LTP and HTP single cell structures, ionization potential,  $IP$ , and electron affinity,  $EA$ , at different levels of theory: non-relativistic and relativistic DKH and DKHSO.

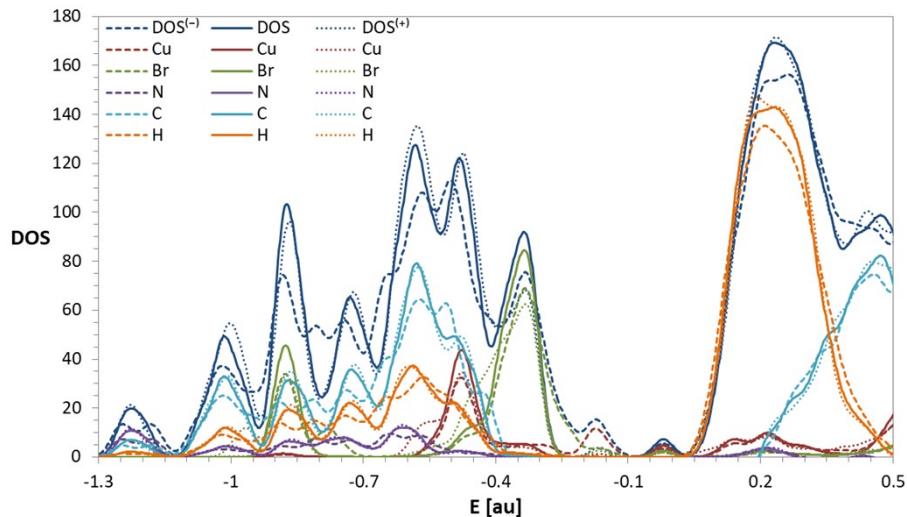



**Figure S10.** Orientation of first order hiperpolarizability,  $\vec{\beta}$ , and electric dipole,  $\vec{\mu}$ , vectors in unit cell. Approximate charge transfer direction is indicated by broken lines connecting Cu ions.




**Figure S11.** The Cu atoms chemical shifts between four  $\text{Q}_2\text{CuBr}_4$  sub-units A, B, C and D in a unit cell, and between unit cells of LTP and HPT phases.




**Figure S12.** The UV-Vis spectrum calculated for LTP, HTP, and optimized  $\text{Q}_2\text{CuBr}_4$  sub-units, and LTP and HTP unit cell structures.



**Figure S13.** Difference between UV-Vis curves for unit cell LTP structure and unit cell HTP structure, or the unit cell LTP structure and 4 times the sub-unit curves, and the unit cell HTP structure and 4 times the sub-unit curves.



**Figure S14.** DOS and PDOS calculated in unit cells.



**Figure S15.** Aligned neutral system DOS, anionic system DOS<sup>(-)</sup> and cationic system DOS<sup>(+)</sup>

calculated in unit cells.

## Theoretical Results

### *Validation of the Computational Method.*

Different conformations of isolated  $\text{Q}_2\text{CuBr}_4$  sub-unit were modelled in gas phase, at fixed (experimental) and relaxed (optimized) geometries.

Relaxed structures of  $\text{Q}_2\text{CuBr}_4$  sub-unit are about 10 eV lower in energy than the fixed experimental geometries. The energies are presented in **Table S3**. The energy difference between HTP (phase I) and LTP (phase II) sub-unit structures is about 0.5 eV with B97D, M06, M06L and wB97XD functionals, while with LC-TPSSTPSS it is twice lower.

The B97D, M06 and M06L functionals estimate very low frontier orbital originated gaps ( $\epsilon_{LUMO} - \epsilon_{HOMO}$ , the optical gap<sup>1</sup>), **Table S3**, as compared to the finite difference values obtained from vertical ionization energy and electron affinity ( $I - A$ , the fundamental gap). Predicted  $I - A$  gap is quite similar for all methods, approximately 5.5 – 6.5 eV for optimized structures, and 5.8 – 6.8 eV for experimental geometries, although the optimized structures are about 0.3 eV softer (having a smaller gap). The results for optical gap are more inconclusive, ranging from about 0.5 eV to 7.9 eV depending on the functional chosen. The highest gap values were obtained by the LC-TPSSTPSS and wB97XD functionals, and lower by M06L, M06 and B97D. The LC-TPSSTPSS functional predicts about 1 eV higher optical gaps than the fundamental ones, while wB97XD has optical gaps only about 0.2 eV lower from the fundamental. Optical gaps estimated with remaining functionals are 0.5 - 2.8 eV which is 10% to 50% of the fundamental gap as estimated by respective functional.

Two functionals, namely B97D and M06L, predict negative vertical  $A$ . The vertical  $I$  are similar among functionals and parallel to fundamental gap. The wB97XD gives the best fit between vertical  $I$  and  $A$  values and the negative of  $\max(\epsilon_{HOMO}^\alpha, \epsilon_{HOMO}^\beta)$ , and  $\min(\epsilon_{LUMO}^\alpha, \epsilon_{LUMO}^\beta)$  Khon-Sham orbital eigenvalues, with  $I/\epsilon_{HOMO} \approx 1 \pm 0.01$  for all structures and  $A/\epsilon_{LUMO} \approx 0.92$  for optimized structure. Second best is LC-TPSSTPSS also with high similarity between estimates. The rest of the functionals has quite different estimates of ionization energy and electron affinity from vertical energies and frontier orbitals. On

account of the inverse relation <sup>2,3</sup> between energy gap and electric dipole polarizability,  $\alpha$ , a tendency in the energy gaps might be strengthen, since the lowest  $\alpha$  is estimated by LC-TPSSTPSS and wB97XD. For each structure (optimized, LTP and HTP), calculated by different method the fundamental gap correlates with  $1/\alpha$ . At the same time the M06L functional breaks the trend in case of the optical gap vs.  $1/\alpha$ . Assuming <sup>3</sup>:

$$I - A \propto \sqrt[3]{\frac{1}{\alpha}} \quad \text{Eq. S1}$$

the energy gap for sub-units estimated from  $\alpha$  is around 4.5 eV (for  $\alpha$  refer to **Table S4**).

Besides, the B97D and M06L are less reliable on account of negative electron affinity. The M06L also stands out in correlation between optical gap and polarizability. Moreover the M06, M06L and B97D show considerable mismatch in predicted values of ionization energy and electron affinity form vertical energies and Kohn-Sham “orbital” eigenvalues, with especially unreasonable “optical” electron affinity. This leaves LC-TPSSTPSS and wB97XD, and the greatest difference between two is in optical gap, which is more conservative for the former one.

However the TPSS functional is known for its exceptional performance with respect to predictions of experimental structures <sup>4,5</sup>. Considering the bond lengths and conformation of  $CuBr_4^{-2}$  in optimized and experimental structures the LC-TPSSTPSS reproduces very well the experimental geometries. In such case the experimental structures might be viewed as a proxy to ground state structures obtained using LC-TPSSTPSS. The difference in coordination of organic quinuclidine molecules in the isolated optimized  $Q_2CuBr_4$  sub-unit might be explained by lack of interactions (mainly hydrogen bonds) constraining them in the crystal environment, **Figure S7**.

The LC-TPSSTPSS predicts similar orientation of electric dipole moment (wrt surface spanned on Cu, N, N atoms) across aligned different structures - optimized and the experimental LTP and HTP geometries, **Table S5**, and **Figure S8**. Additionally in all cases it shows almost parallel angle ( $\cos\theta \approx 1$ , in **Table S4**, and **Figure S8**) with the first order hyperpolarizability. This indicates that any charge transfer would be approximately parallel or antiparallel to the molecular dipole moment.

Therefore, since in cluster model the fixed experimental geometries are examined, the LC-TPSSTPSS has been selected as the most optimal computational method.

### *Basis set quality*

A single cell structures have been calculated using double- $\zeta$ , DZP, and triple- $\zeta$ , TZP, basis sets with LC-TPSSTPSS functional, **Tables S6 and S7**. The TZP produce about 8% lower relative energies compared to DZP, yet qualitatively similar results. The energy difference between two HTP variants is almost the same in both basis sets. The energy differences between LTP state and two HTP states in TZP are only less than 0.1 eV smaller as compared with double- $\zeta$  basis set. Since there is not much basis set dependence, and due to extensive system size, we deem the Jorge-DZP and Jorge-DZP-DKH basis sets sufficient for system modeling (see **Table S6**).

### *Energetics and Electronic Structure Characterization*

Two variants of HTP unit cell structure are higher in energy from the LTP structure by about 1.12eV and 1.41eV (with relativistic corrections), and by 1.17eV, 1.45eV in non-relativistic limit. Respective results are listed in **Table S7** and compared in **Figure S9**. The HTP structures are therefore thermally excited states of LTP state. The vertical electron affinity is predicted (at relativistic level) approximately 1.3 eV, and vertical ionization potential 7.4 eV, which is quite similar to isolated sub-units, except  $A$  is a little higher (calculated with experimental geometries).

Therefore the estimated energy gaps in single unit cell are around 6 eV, presented in **Table S8**, which is similar to aluminum nitride band gap. Because not minimized structures are usually softer than optimized ones the predicted gap may be considered underestimated. However in case of the single  $\text{Q}_2\text{CuBr}_4$  sub-units the optimized structures actually ended up softer (with a smaller gap) than the fixed geometries based on the crystal structure (**Table S3**). On the other hand in solid state (under periodic conditions) the band gap would get narrower than the values obtained for molecular model (the optical gap reduces in larger systems<sup>6,7</sup>). Moreover the gap estimated from polarizability (**Eq. S1**) in unit cells drops to 2.85 eV, against 4.5 eV in isolated sub-units. Therefore a justified assumption might be made that the real gap of the material is not greater than the estimated 6 eV, and potentially at least weak semiconducting properties could be expected.

### *Electric Properties: Dipole Moment, Polarizability, Hiperpolarizability*

The unit cells have small dipole moment of approximately 2 Debye, which originates from the intra-cell interactions between four sub-units, in spite of lack of counter-interactions at unit cell surfaces, **Table**

**S9.** The sum of dipole moments of four isolated sub-units results in total 0 Debye moments in HTP structures, and in LTP structure the resultant dipole moment of 0.95 D, which is half of the value from the unit cell structure. The intra-cell interactions cause different effect in HTP and LTP structures. The dipole moment in LTP unit cell structure is about 0.4 Debye lower than dipole in HTP unit cell structures. It is mainly driven by  $\mu_x$  component (uniaxial with the lattice vector ‘ $a$ ’). It might be directly related to quinuclidine bicyclic cage rotation (where one of three N—C bonds aligns parallel to lattice vector “ $a$ ” on its “positive” or “negative” end). The disparity in dipole moments of two variants of the high temperature phase structures is only 0.03 Debye, and is also associated with  $\sim 60^\circ$  rotation of corresponding but different quinuclidine molecules in the unit cell (one of the two quinuclidine are rotated per each  $Q_2CuBr_4$  sub-unit). Each of the two HTP phase structure variants differ from LTP structure only by two of such rotated quinuclidine molecules.

The isolated  $Q_2CuBr_4$  sub-units have high polarizability, and significant first order hyperpolarizability that is 36 to 40 times higher than in urea<sup>8</sup>. The LC-TPSSTPSS/Jorge-DZP method in gas phase underestimates  $\beta$  for urea by one third, producing  $23.54$  au ( $0.1220 \cdot 10^{-30}$  esu), vs. benchmark value of  $37$  au ( $0.1915 \cdot 10^{-30}$  esu). The calculated polarizability of unit cells is about 4 times higher than that of a single  $Q_2CuBr_4$  sub-unit. Therefore polarizability is approximately “additive” or scalable, which is typical for conducting materials like ionic liquids<sup>9-12</sup>. The first hyperpolarizabilities,  $\beta$ , on the other hand become reduced by half in the unit cell as compared to isolated sub-units, but still it is over 17 or 20 times higher than in urea (for HTP and LTP structures respectively). As indicated by the  $\cos\theta$  the possible charge transfer direction in LTP structure is relatively antiparallel to the dipole moment vector ( $\sim 140^\circ$ , which in terms of unit cell parameters - lattice vectors, is  $\vec{\beta} \approx [19a, 33b, -8c]$ ), while in HTP structures it is more perpendicular to the dipole moment ( $\sim 115^\circ$ ,  $\vec{\beta} \approx [36a, 31b, -9c]$ ). In both cases it is a direction normal to the surface formed by Cu and two N atoms in  $Q_2CuBr_4$  sub-unit, and along respective line made by Cu ions in the crystal structure, **Figure S10**. In isolated sub-units, the charge transfer direction is almost parallel ( $\sim 12^\circ$ ) with  $Q_2CuBr_4$  dipole moment. Since the LTP structure exhibits the intrinsic non-centrosymmetry, together with non-zero dipole

moment and large first-order hyperpolarizability values, therefore the NLO behavior might be anticipated.

### *Theoretical NMR Chemical Shifts*

It has been shown in the literature that LC-TPSSTPSS functional performs well for chemical shifts.<sup>5,13</sup> The theoretical chemical shifts between high-spin quintet state and low-spin antiferromagnetic singlet states have been compared for LTP and HTP unit cells. The N, C, H atoms show small (< 0.2 ppm) on average, upfield shifts for singlet states as compared to quintet state (summary in **Table S11**). The Br atoms are also upfield shifted, on average by 13.5 ppm or 12.5 ppm (singlet-quintet transition) for LTP and HTP phase structures respectively (the standard deviation among Br atoms is 2.9 ppm). The Cu atoms are downfield shifted, on average by -10.6 ppm or -10.8 ppm in LTP and HTP respectively, with standard deviation of 0.55 ppm.

The shifts between the LTP and the HTP structures are very similar in each spin configuration. The upfield shift for Cu atoms in HTP structures has been observed wrt LTP structure. The magnitude of shifts is different for Cu atom of each  $Q_2CuBr_4$  sub-unit, **Figure S11**. The Cu atoms in sub-units A and C are aligned with the charge transfer direction, with absolute shifts of about 62 ppm and 161 ppm respectively. The Cu in sub-units B and D, with absolute shifts of 171 and 151, are also align along CT direction in the cristal, but not within a single unit cell. Generally downfield shift occurs for N, Br and C atoms, except for few carbon atoms on the rotating quinuclidine ligands.

### *UV-Vis spectrum*

The simulated UV-Vis spectrum, **Figure S12**, shows that photon absorption takes place mainly in the UV region of the spectrum. Around the orange / red region a minimum appears followed by a low flat maximum in the near IR region. The intensity for unit cell curve is approximately 4 times greater than that of a single sub-unit. The LTP structure curve is red-shifted wrt HTP by about 5-8 nm, it has also a greater intensity in orange / red region. The absorption changes between HTP and LTP phase, resulting in maximum difference around the green and violet regions. **Figure S13** shows difference between curves for unit cell structures LTP or HTP and the sum of respective individual isolated sub-units curves. The spectrum does not change much in the visible region for HTP hence the intermolecular interactions between the sub-units (any many body effects) are not affecting the curve in visible region. Yet phase

transition related structural change is related to additional absorption with maximum in green that originates from intermolecular interactions between sub-units in LTP structure.

### Density of states

Density of states, **Figure S14**, shows contribution from atomic states to molecular orbitals. The HOMO levels are predominantly located on Br lone pairs, while the LUMO- $\beta$  has mixed Cu/Br character. Noticeably higher in energy the LUMO- $\alpha$  is localized on H atoms (from amino groups) with small partial Cu character. Comparison between the aligned DOS of  $N\pm 1$  electron systems (energy shifted by  $|\Delta| = 1.69$  eV, **Figure S15**), shows that around chemical potential energy (corresponding to Fermi level) a state with Cu/Br mixed character appears. This mixed state is LUMO of cationic system (with major contribution from Br) and HOMO of anionic system (with major contribution from Cu). Because this state is found slightly below the chemical potential, determined as mid between HOMO and LUMO, intrinsic or possible p-type semiconduction is suggested.

## Appendix

The components of first-order hyperpolarizability,  $\beta$ , are defined as <sup>14,15</sup>

$$\beta_i = \beta_{iii} + \frac{1}{3} \sum_{i \neq j} (\beta_{ijj} + \beta_{jij} + \beta_{jji}), \quad i = x, y, z \quad (24)$$

Employing Kleinman symmetry, one obtains <sup>14-19</sup>

$$\beta_x = \beta_{xxx} + \beta_{xyy} + \beta_{xzz} \quad (25)$$

$$\beta_y = \beta_{yyy} + \beta_{yxx} + \beta_{yzz} \quad (26)$$

$$\beta_z = \beta_{zzz} + \beta_{zyy} + \beta_{zxx} \quad (27)$$

The total intrinsic quadratic hyperpolarizability is

$$\beta_{tot} = \left( \beta_x^2 + \beta_y^2 + \beta_z^2 \right)^{\frac{1}{2}} \quad (28)$$

The  $\beta_{tot}$  might be determined only theoretically. Experimentally the vector component along the dipole moment direction, can be found:

$$\beta_{vec} = \sum_i \frac{D_i \beta_i}{|D|} \quad (29)$$

The former definitions refer to solution-phase measurements, while for the gas-phase measurements the component parallel to the ground state charge transfer direction is used <sup>15</sup>

$$\beta_{\parallel} = \frac{3}{5} \beta_{vec} \quad (30)$$

The ratio of  $\beta_{vec}$  to  $\beta_{tot}$  gives direction of charge transfer in a molecule<sup>20</sup>

$$\frac{\beta_{vec}}{\beta_{tot}} = \cos\theta, \quad \theta: \angle(\vec{D}, \vec{\beta}_{vec}) \quad (31)$$

The  $\theta$  is angle between  $\beta_{vec}$  and electric dipole moment, hence if ratio is  $\pm 1$  the charge transfer is parallel or antiparallel to the molecular dipole moment.

## References

1. Koopman's theorem – kohn-Sham version
2. Yang, W.; Parr, R. G., Hardness, softness, and the fukui function in the electronic theory of metals and catalysis, Proc. Nat. Acad. Sci. USA 82 (1985) 6723-6726.
3. Ayers, P.W., The physical basis of the hard/soft acid/base principle, Faraday Discuss., 2007, 135, 161-190.
4. Bühl, M.; Kabrede, H., Geometries of Transition-Metal Complexes from Density-Functional Theory, J. Chem. Theory Comput. 2006, 2, 5, 1282–1290.
5. Iron, M.A., Evaluation of the Factors Impacting the Accuracy of <sup>13</sup> C NMR Chemical Shift Predictions using Density Functional Theory-The Advantage of Long-Range Corrected Functionals, J. Chem. Theory Comput. 2017, 13, 5798–5819.
6. Sattler, K., Chapter 2 - The energy gap of clusters, nanoparticles, and quantum dots in Handbook of Thin Films, Vol. 5, Academic Press, 2002, Pages 61-97.
7. Abdullah, B.J., Size effect of band gap in semiconductor nanocrystals and nanostructures from density functional theory within HSE06, MSSP 2022, 137, 106214.
8. Krishnakumar, V.; Nagalakshmi, R., Studies on the first-order hyperpolarizability and terahertz generation in 3-nitroaniline, Physica B: Condensed Matter, 403, 2008, 1863-1869.
9. Heid, E.; Heind, M.; Dienst, P.; Schröder, C., Additive polarizabilities of halides in ionic liquids and organic solvents, J. Chem. Phys. 2018, 149, 044302.

10. Bernardes, C. E. S.; Shimizu, K; Lopes, J. N. C.; Marquetand, P.; Heid, E.; Steinhauser, O.; Schröder, C., Additive polarizabilities in ionic liquids, *Phys. Chem. Chem. Phys.*, 2016, 18, 1665–1670.

11. Gagné, O.; Hawthorne, F.; Shannon, R.D.; Fischer, R.X., Empirical electronic polarizabilities: deviations from the additivity rule. I.  $M^{2+} \cdot SO_4 \cdot nH_2O$ , blödite  $Na \cdot 2M^{2+} \cdot (SO_4)_2 \cdot 4H_2O$ , and kieserite-related minerals with sterically strained structures, *Phys Chem Minerals* (2018) 45:303–310.

12. Miller, K.J., Additivity methods in molecular polarizability, *J. Am. Chem. Soc.* 1990, 112, 23, 8533–8542.

13. Safi, Z.S.; Wazzan, N., DFT calculations of  $^1H$ - and  $^{13}C$ -NMR chemical shifts of 3-methyl-1-phenyl-4-(phenyldiazenyl)-1H-pyrazol-5-amine in solution, *Scientific Reports*, (2022) 12:17798.

14. Jeewandara , A.K.; de Silva, K.M.N.; Are Donor–Acceptor Self Organised Aromatic Systems NLO (Non-linear Optical) Active?, *J. Mol. Struct.*, 2004, 686, 131–136.

15. Kanis, D.R.; Ratner, M.A.; Marks, T.J.; Design and Construction of Molecular Assemblies with Large Second-Order Optical Nonlinearities. *Quantum Chemical Aspects, Chem. Rev.*, 1994, 94, 195–242.

16. Chattaraj, P.K.; Sengupta, S.; Popular Electronic Structure Principles in a Dynamical Context, *J. Phys. Chem.* 1996, 100, 16126–16130.

17. Parr, R.G.; Yang, W.; *Density-Functional Theory of Atoms and Molecules*, Oxford University Press, New York, 1989.

18. Pralok, K.S.; Mehboob, A.Md.; Ramprasad, M.; , Swapan, K.P.; Tuning of hyperpolarizability, and One- and Two-Photon Absorption of Donor–Acceptor and Donor–Acceptor–Acceptor-Type Intramolecular Charge Transfer-Based Sensors, *Phys. Chem. Chem. Phys.* 2019, 21, 17343–17355.

19. Kleinman, D.A.; Nonlinear Dielectric Polarization in Optical Media, *Phys. Rev.*, 1962, 126, 1977.

20. Machado, D.F.S.; Lopes, T.O.; Lima, I.T.; da SilvaFilho, D.T.A.; de Oliveira, H.C.B.; Strong Solvent Effects on the Nonlinear Optical Properties of Z and E Isomers from Azo-Enaminone Derivatives, *J. Phys. Chem. C* 2016, 120, 17660–17669.

