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Fig. S1. (a, b) SEM micrographs of CuW and CuW/ gCN respectively (inset: high

magnification) (c, d) their respective EDS spectra.
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Fig. S2. (a) FTIR transmittance (4000-500 cm') and (b) UV-Visible absorption spectra of
CuWO, and CuW/gCN samples.
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Fig. S3. (a) Dependence of cathodic peak current with scan rate (log v — log i plot) (b) GCD
curves of CuW at different current densities (c) EIS Nyquist plots of CuWO, and CuW/gCN

samples.

Table S1. Supercapacitive parameters of CuWO,/g-CsN, compared with tungstate materials.
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Material Synthesis Capacitance Capacity References
(F/g) Retention (%)

ZnWO, Microwave 72 70 [1]
irradiation (10000 cycles)

CuWO, Microwave 10.06 _ 2]
irradiation

ZnFe,0,/rGO Hydrothermal 33.6 _ [3]

CuWO4/rGO Hydrothermal 35.71 100 [4]

(1000 cycles)

CuW/gCN Microwave 111 85 Present work

irradiation (10000 cycles)




Table S2. Comparison of few recently reported HER electrocatalysts.

Material Synthesis Electrolyte  Overpotential Tafel References
(mV) (mV/dec)
NiWO,/NWS Hydrothermal 1M KOH 400 66 [5]
CoMn,04/NNF  Hydrothermal IM KOH 318 135.19 [6]
CoNi, Oy Hydrothermal IM KOH 259 131.6 [7]
Wi304/NiWO,  Hydrothermal IM KOH 280 101 [8]
MoS,/COF/C,N  Hydrothermal 1M KOH 358 - [9]
CuW/ppy Hydrothermal IM KOH 250 50 [10]
PPy/ZnWO, Hydrothermal 0.5 M H,SO, 543 76 [11]
CuWO, Hydrothermal 0.5 M H,SO, 574 - [12]
CuW/gCN Microwave 0.5 M H,SO, 143 46 Present
irradiation Work

Table S3. Electrocatalytic OER performance of recently reported tungstate materials.

Material Synthesis Electrolyte = Overpotential Tafel References
(mV) (mV/dec)

ZnWO4Nbs Hydrothermal IM KOH 475 140 [13]

ZnWQO, Hydrothermal IM KOH 636 155 [11]

CoMoO;, Hydrothermal IM KOH 765 110 [14]

CoWO, 810 107

Wi3040/NiWO, Hydrothermal IM KOH 250 85 [8]

MoS,/COF/C,N  Hydrothermal IM KOH 349 - [9]

CuWO0O,/rGO Hydrothermal  0.5M KOH 270 110 [15]

CuW/gCN Microwave IM KOH 430 104 Present
irradiation Work
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Fig. S4. Capacitance retention (black diamonds) and Coulombic efficiency (red hexagons) of

the CuW/gCN electrode.
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Fig. S5. EIS Nyquist plots of the electrodes in the frequency range 0.01 Hz to 100 kHz. (a) in
0.5M H,SOq (b) in IM KOH.
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Fig. S6. CV curves of CuW and CuW/gCN electrodes in the non-Faradaic region at different
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scan rates. Upper layer: HER (in 0.5M H,SO,) and lower layer: OER (in 1M KOH).




Fig. S7 DFT relaxed configuration for adsorbed species of (a) O, (b) OH, and (c) OOH on the
CuW. Blue, red, green, sky blue and magenta color represent the Cu, W, O, O (adsorbed

species) and H atom respectively.

Fig. S8. H adsorption on the surface of (a) CuW and (b) CuW/gCN. Blue, red, green, yellow,

black, and magenta color represent Cu, W, O, N, C and H atom, respectively.



Table S4. Comparison of experimental and computed values of overpotential for OER

System Overpotential (mV)

Experimental | Computed
CuW 530 587.25
CuW/gCN 430 493.68

Table S5. Comparison of experimental and computed values of overpotential for HER

System Overpotential (mV)
Experimental Computed
CuW 325 383.62

CuW/gCN 143 205.34
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Fig. S9. (a) Xrd graph of post- stability CuW/gCN electrode. (b, ¢, d) SEM micrographs of post

stability CuW/ gCN respectively (low to high magnifications).
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Fig. S10. (a) Comparative CV graphs at scan rate of 20mV/s
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