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1. NMR spectra of new compounds
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Figure S1. 'H (top) and "“C{'H} APT (bottom) NMR spectra of conformer [{Pt(N"C"C)},{p-
(Imme)2(CH2)1}] (1a) (CD2Cl,, 600 and 151 MHz, respectively).
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Figure S2. '"Pt{'H} NMR spectrum of conformer [ {Pt(N*"C*C)}2{p-(Imme)2(CHz)1}] (1a) (CD.Cl,, 129
MHz).
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Figure S3. 'H (top) and “C{'H} APT (bottom) NMR spectra of conformer [{Pt(N*C"C)},{p-

(Imme)2(CH2)1}] (1b) (CD2Cl, 600 and 151 MHz, respectively).
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Figure S4. 'H (top) and *C{'H} APT (bottom) NMR spectra of complex [{Pt(N*C"C)},{p-

(Imme)2(CH2)3}] (2) (CD:Cl2, 600 and 151 MHz, respectively).
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Figure S5. 'Pt{'H} NMR spectrum of complex [{Pt(N"C"C)}»{u-(Imme)2(CHz2)3}] (2) (CD:Cly, 129
MHz).
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Figure S6. 'H (top) and *C{'H} APT (bottom) NMR spectra of complex [{Pt(N*C"C)},{p-

(Imme)2(CH2)s}] (3) (CDCl, 600 and 151 MHz, respectively).
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Figure S7. 'Pt{'H} NMR spectrum of complex [{Pt(N*C C)}2{u-(Imme)2(CH2)6}] (3) (CD:Cla, 129
MHz).
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Figure S8. 'H NMR spectra of complex 1 at different temperatures (DMSO-de, 600 MHz, 298 to 358 K).
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Figure S9. Aromatic region of the 'H NMR spectra of complex 1 (DMSO-ds, 600 MHz, 298 to 358 K).
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Figure S10. '"H NMR spectra of complex 2 at different temperatures (DMSO-ds, 600 MHz, 298 to 358 K).
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Figure S11. Aromatic region of the "H NMR spectra of complex 2 (DMSO-des, 600 MHz, 298 to 358 K).
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Figure S12. 'H NMR spectrum of mixture 1a:1b (2.5:1 ratio) after 72 h of atropisomer 1a in CD,Cl,
solution (CD,Cl,, 600 MHz, 298 K).
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Figure S13. 'H NMR spectrum of mixture 1a:1b (1:1.1 ratio) after 24 h of atropisomer 1b in CD,Cl,
solution (CD,Cl,, 600 MHz, 298 K).
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2. Additional photophysical data
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Figure S14. Absorption spectra of complex 3 in MeCN solution (ca. 2.5 x 107> M) before and after 30 min
of continuous irradiation at 430 nm, using the 450 W xenon lamp of the spectrofluorometer (15 nm

bandpass).
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Figure S15. Absorption spectra of complex 3 in MeOH solution (ca. 2.5 x 10> M) before and after 30 min

of continuous irradiation at 430 nm, using the 450 W xenon lamp of the spectrofluorometer (15 nm

bandpass).
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Figure S16. Absorption spectra of complex 3 in 2-MeTHF solution (ca. 2.5 x 10° M) before and after 30
or 60 min of continuous irradiation at 430 nm, using the 450 W xenon lamp of the spectrofluorometer (15

nm bandpass).

Figure S17. Photographs of MeCN solutions of complexes 1, 2 and 3 (from left to right) at 2.5 x 10> M
concentration under UV irradiation at 298 K.
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Figure S18. Excitation and emission spectra of complexes 1-3 in MeCN solution (ca. 2.5 x 10> M) at 298

K. The collected Aem for excitation spectra corresponds in all cases to the highest-energy emission peak,
with the exception of 1, for which two emission wavelengths have been monitored.
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Figure S19. Excitation and emission spectra of complexes 1-3 in 2-MeTHF solution (ca. 2.5 x 107° M) at
298 K. The collected Acm for excitation spectra corresponds in all cases to the highest-energy emission peak.
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Figure S20. Excitation and emission spectra of complexes 1-3 in MeOH solution (ca. 2.5 x 10 M) at 298
K. The collected A.m for excitation spectra corresponds in all cases to the highest-energy emission peak.
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Figure S21. Excitation and emission spectra of complex [Pt(dmtppy)(imz)] in 2-MeTHF solution (ca. 5 x
1075 M) at 298 K. The collected Aem for excitation spectra corresponds to the highest-energy emission peak.
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Figure S22. Excitation and emission spectra of complexes 1-3 in PMMA matrices (2 wt%) at 298 K. The
collected A.m of the excitation spectra corresponds to the highest-energy peak of the emission.
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3. Computational methods and data

DFT calculations were carried out with Gaussian 16, using the B3LYP functional®* together with
the 6-31G***3 basis set for the C, H, N, and O atoms and the LANL2DZ?® basis set and effective core
potential for the Pt atom. Geometry optimizations were performed with no restrictions on symmetry. The
solvent effect (dichloromethane) was accounted by using the SMD variation of the Polarizable Continuum
Model, as implemented in Gaussian.” The optimized structures were confirmed as minima on the potential
energy surface by performing frequency calculations (no imaginary frequencies).

Table S1. Energies, free energies, enthalpies and entropies of the optimized structures.”
Stereoisomers Eo? ZPE ¢ G“ He S/
cisoid -2845.491766 -2844.551455 -2844.659086 -2844.489771 356.353
transoid -2845.491906 -2844.551050 -2844.658061 -2844.489483 354.801

¢ Thermal corrections from vibrational calculations at 298.15 K. ? Electronic energy (Hartrees). ¢ Sum of electronic
and zero-point energies (Hartrees). ¢ Free Energy (Hartrees). ¢ Enthalpy (Hartrees)./ Entropy (cal mol™' K™).

Table S2.

oo lioNoNoNoNoNoNoNoNoNoNoRo o NoNoNoRo o NOoRo NN @Rr RN o RO NG Nay

-3.818563026
-3.789044699
-4.793178596
-4.557416140
-4.403508847
-5.718876475
-5.068550307
4.698299919
5.392568955
4.703588051
3.358016278
2.706985521
1.285950908
0.860654634
-0.467321969
-1.369410055
-0.959313684
0.370367999
-0.693755983
0.463462694
0.308483675
-0.918398234
-2.022975084
-1.910878155
-1.022799671
-1.929755976
-2.910668273
-2.809500733
-1.901520375
5.187663391
6.441228291
5.207725898
2.806995322
-2.406742944
0.680417229

7.368097483
8.757182893
9.443205051
6.771379013
10.389337300
9.671782846
8.811817851
6.419750786
7.450074394
8.253590041
8.001207631
6.950203246
6.594392031
5.504780885
5.042701470
5.687033446
6.788198648
7.235567740
3.896327777
3.481249647
2.410570187
1.737548851
2.162189172
3.232431563
0.583623735
7.464465952
6.734160760
9.486460317
8.856943970
5.766975088
7.611708728
9.068583172
8.616743643
5.366198783
8.065717248

6.829944912
6.638027881
5.743408391
6.299578813
5.355082092
6.287898336
4.892372458
11.504560731
10.879572448
9.969909243
9.723240994
10.382935790
10.205786139
10.976801306
10.913731475
10.063961450
9.274730837
9.350730480
11.821775715
12.568204302
13.454786490
13.630948484
12.886755671
11.992340126
14.601015315
8.372407479
7.676716883
7.326659306
8.177750051
12.219366321
11.103708700
9.459176361
9.021291554
10.013448412
8.722721177
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Cartesian coordinates (A) of the optimized structures.
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3.838718790

2.782543179

4.083338064

4.983938845

4.976667647

5.520064212

5.508725690

4.715698722

5.836341230

4.570627203

5.621557762

3.741530954

5.890801983

7.585648177

7.347547625

8.342961728

7.967686475

6.381032474
6.582732298

7.300444183

5.203048029

2.072632563
1.657501156
3.546172350
5.653427621
10.566034081
9.457960523
0.186711640
0.886219553
-0.239859672
6.166966677
4.576155010
3.593414612
4.064780035
1.439708088
5.357524721
0.417708460
1.667841581
2.350800834
3.142718911
2.060488686
3.336711401
1.122029211
1.554247683
0.782831510
2467554576
2.267916278
3.158117164
2.746002781
0.707414942
0.320842949
1.490966027
-0.103579563
1.242466079
-0.740989862
-2.144443456
-2.199087130

14.038377500
13.006367774
11.427669160
7.780531140
7.202429602
8.713762101
14.643636044
15.616292721
14.318027409
11.271900968
12.178726143
13.440863942
14.581294466
12.190198547
15.192559225
12.560977911
11.833280981
13.288207207
15.130293584
14.314899654
16.046559069
14.359474900
11.073742504
10.913193831
10.034066904
9.202252604
9.993220136
8.273011375
9.126981110
8.132314522
9.035894888
9.746829441
9.754595381
12.183254048
13.386423615
11.843461928
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14.327018130
12.462465375
10.840605529
10.392853260
13.385417279
12.077904648
14.557008511
15.087289624
15.588149646
14.398625655
11.593213054
13.035059024
9.892634548
14.289005741
13.145468999
15.254759883
15.990827391
11.500327948
9.912391168
8.858928067
10.146585968
14.779000431
16.716262617
16.158429574
17.566251669
16.634402866
17.012408992
15.598965077
17.731382911
18.120423917
17.115282107
18.628897741
19.058699525
18.073406148
19.450787216
15.237192098
14.589058608
16.205394266

7.397934401
6.729134582
5.805980426
7.275385841
5.794039012
4.772840695
6.101933068
13.396637742

520
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-0.939321854
-2.089662503
-2.046804523
-0.859154787
-0.700265275
0.573102178
0.875222397
-0.116552799
-1.408808656
-1.693198987
2.276299842
3.040638222
4.370369382
4.970813391
4.201617826
2.867089871
6.412770620
-2.455147227
-2.559976811
-4.362048434
-3.380053330
1.131331189
-0.926663326
-3.010426943
-2.931569605
0.097198452
-2.694343101
4.977255257
4.644617581
2.288095547
-1.881106611
-5.058731450
-3.318062448
6.730329358
7.086125862
6.571022929
0.264649040
1.997611401
3.517393654
4.049619678
3.968018149
3.644154466
3.984602998
2.997782781
4.185335682
5.021860591
5.109692515
5.546781683
5.724353989
4.984155902
6.072696396
4.962411327
6.058343098
4.181283270
6.419337234
7.939204038
7.751005484

1.505664809
1.851561238
2.928097361
3.651586834
4.812668030
5.395537851
6.520424111
7.054734433
6.478782625
5.358410670
6.959890841
6.165833920
6.538655591
7.641929987
8.391424204
8.052781034
7.996194258
7.055718438
8.444290811
6.779452512
6.235385856
2.029165738
0.675139405
1.291081138
3.214476653
7.906776268
4.937915135
5.960544951
9.246349685
8.653167919
9.112431381
6.115375917
5.156454983
8.870588647
7.167216349
8.220720355
3.297510781
4.623888338
3.760732663
4.224204561
1.709766548
5.453688187
0.673546688
1.964941210
2.583757550
3.363486510
2.327014989
3.562165854
1.439333277
1.851444443
1.030203845
2.838717657
2.634497006
3.581511119
3.158201864
0.974213294
0.663258402

13.601769386
12.891723481
12.011556139
11.843224804
10.946549460
10.973121143
10.183364581
9.357271640
9.313428458
10.112515632
10.367066664
11.291274941
11.513533725
10.872598368
9.977473408
9.728382375
11.154008691
8.426976501
8.228888471
6.929052296
7.755725903
13.925444778
14.298944695
13.023101417
11.454231529
8.716907636
10.090318340
12.207784589
9.471515504
9.029839830
8.751248065
6.422200453
7.866944144
10.577868496
10.902554087
12.216271110
12.547422718
12.116473520
13.318476039
14.480718774
11.955672641
15.155509673
12.289607933
11.531078702
13.102006561
14.978264506
14.109882735
15.900040631
14.108759239
10.921137681
10.784544756
9.940653837
9.171032152
9.891643240
8.299325720
9.119470391
8.088247763
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8.738194056
8.237759863
6.721840667
6.656156171
7.225114002
5.208638771
8.474265580
8.363982183
6.462228320
5.318888432
4.155966001
9.031715446
9.049074841
8.749806427
6.854607905
4.390333472
3.216877022
4.046351115
10.179869736
8.531810113
10.206858728
8.001011676
9.613346437
6.298127809
3.347649346
4.473167640
2.103243795

1.720587011

0.107140339

1.533107190
-0.598227604
-2.095943615
-1.949527880

0.224620238
-1.967273299
-3.278713410
-3.196331969
-1.817601108

1.434334298
-0.665353489
-3.037865180
-4.337144951
-4.214698696
-2.843503901
-0.889882803

1.841948929

2.091016456
-0.306388457
-4.226664473
-2.954460776
-5.270903406
-4.040441776
-5.157267852
-2.643890617

9.129063634
9.708399795
9.700420755
12.010245897
13.178865905
11.536548543
12.997904431
13.984279340
13.180998383
12.245098834
10.625013796
12.824164269
13.870631699
14.811908006
14.003761900
12.017301258
10.390326226
10.066793501
13.494999304
12.120395041
14.573544454
14.826583891
15.465173881
14.006681159
11.100478814
12.554273129
9.388593641

S21
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10.775243407
10.588747004
10.656869314
8.408972251
2.634147289
1.434289869
2.497951348
1.498559255
11.672572020
7.453262370
9.764595244
7.837251956
6.396407719
10.144082907
10.531926544
9.189808525
7.071812570
11.201662690
9.601333743
10.595250010
9.638757370
8.893043490
4.505085040
2.884140792
3.231058189

0.949590856

2.830692737
-1.013127946
-5.361012052
-4.844788036
-3.509189528
-2.488782320
-1.761110389

1.227779209
-6.170605300
-5.664727460
-7.232310178
-5.951339066
-6.725429971
-5.075520302
-7.533782192
-7.831444447
-6.934926534
-8.702843057
-8.551694848
-9.632282199
-8.865562521

6.117024039

5.945658613

5.220930092

14.387618186
13.318353112
15.261524620
15.698424364
10.935999412
9.355723003
8.376583640
9.630308844
14.932344409
16.339156728
15.917759126
17.156974025
16.216156356
16.739737396
15.423427140
17.373493246
17.645220948
16.884072714
18.235573892
18.668222808
17.652146926
19.054403240
15.273518158
14.549640671
16.140944605
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