Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2025

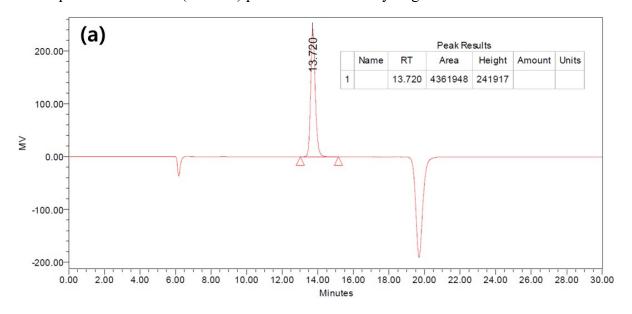
Supplementary information

CO-Free Selective Hydrogenation of CO₂ to Value-Added Formate under Low-Temperature Aqueous Conditions Using a Heterogenized Ru-PNP Catalyst

Hongjin Parka, Minkyoung Goa and Sungho Yoona,*

^a Department of Chemistry, Chung- Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea. E-Mail: sunghoyoon@cau.ac.kr

Contents


Figure S1. Representative (a) HPLC, (b) & (C) ¹H & ¹³C NMR spectra (d) GC chromatogram of the potassium formate (HCO₂K) produced after CO₂ hydrogenation.

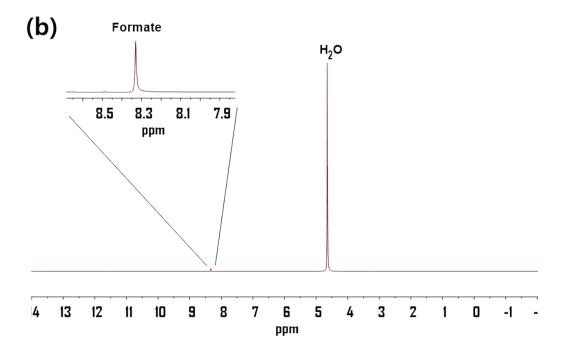

Figure S2. (a) Stainless-steel reactor employed for CO₂ hydrogenation. (b) Overall setup of the hydrogenation system using aqueous KOH, (c) Schematic illustration of the heterogeneous catalyst recycling procedure.

Table S1. Comparison of catalytic performance in KOH-mediated CO₂ hydrogenation.

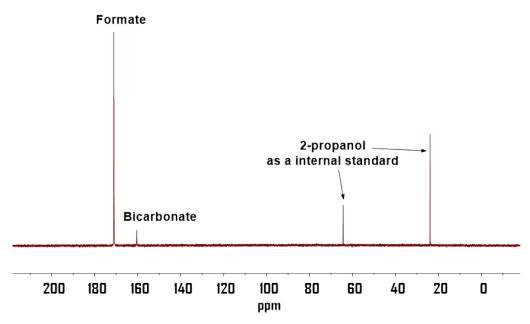

Table S2. List of abbreviations.

Figure S1. Representative (a) HPLC, (b) & (C) ¹H & ¹³C NMR spectra (d) GC chromatogram of the potassium formate (HCO₂K) produced after CO₂ hydrogenation.

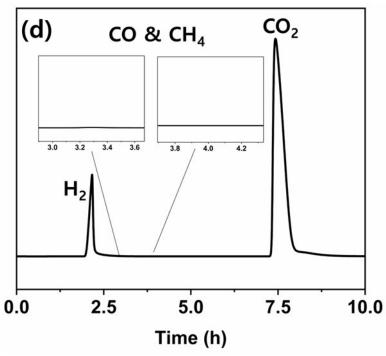
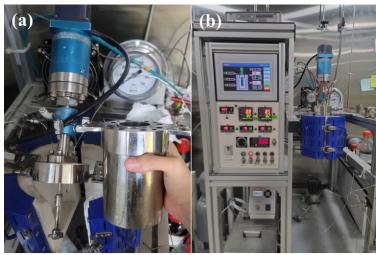



Figure S2. (a) Stainless-steel reactor employed for CO₂ hydrogenation. (b) Overall setup of the hydrogenation system using aqueous KOH, (c) Schematic illustration of the heterogeneous catalyst recycling procedure.

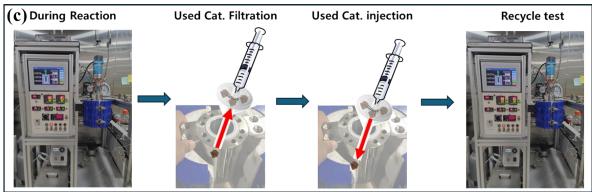


Table S1. Comparison of catalytic performance in KOH-mediated CO₂ hydrogenation.

$H_2 + CO_2/KOH \xrightarrow{Catalyst} HCO_2K + H_2O$				
Entry	Catalyst (cat.)	T (°C)	Time (h)	Yield (%)
1	RuNP@AC	80	16	2.8
2	RuCl ₃ @TN ₂₀ Bpy ₁ -CTF	80	16	21
3	RuCl ₃ @DPPE- POP	80	16	29
4	Ru-MACHO- POMP	120	0.5	82
5	Ru-MACHO- POMP	80	2	31
6	Ru-MACHO- POMP	80	16	>99

Table S2. List of abbreviations.

Abbreviation	Full description	
КОН	Potassium hydroxide	
H ₂	Hydrogen	
CO ₂	Carbon dioxide	
СО	Carbon monoxide	
CH4	Methane	
Ru	Ruthenium	
NN	All types of N,N-bidentate ligands	
PP	PP All types of P,P-bidentate ligands	
PNP	All types of tridentate ligands with a P–N–P sequence	
POMP	Porous organometallic polymer	
Ru-MACHO-POMP	A heterogeneous catalyst synthesized using the Ru-MACHO homogeneous PNP-based catalyst	
RuNP@AC	Ru nanoparticles supported on activated carbon	
CCU	Carbon capture and utilization	
CCS	Carbon capture and storage	
DACU	Direct Air Capture and Utilization	
K ₂ CO ₃	Potassium carbonate	
HCO₂K	Potassium formate	
C1 & C2	C1/C2 compounds: Molecules containing one or two carbon atoms	
NMR	Nuclear magnetic resonance	
ICP-OES	Inductively coupled plasma optical emission spectroscopy	