1 Supplementary Information

- 2 Microwave-Assisted Synthesis of Fe-based Single-Atom
- 3 Nanozyme: A Colorimetric Approach to Detect Cr(VI)
- Zixiang Liao^a, Yue Ren^a, Bingzheng Yuan^a, Libo Li^{a, *}, Tianyan You^{a, b, *}
- 5 a Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of
- 6 Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang,
- 7 Jiangsu, 212013, China
- 8 b College of Agricultural Equipment Engineering, Henan University of Science and
- 9 Technology, Luoyang, Henan, 471003, China
- 10 * Corresponding author. Fax/Tel: +86-511-88982992
- 11 E-mail: lbli@ujs.edu.cn (L. Li)
- 12 E-mail: youty@ujs.edu.cn (T. You)

13 S1 Experiment Section

14 S1.1 Chemicals

Iron nitrate nonahydrate (Fe(NO₃)₃·9H₂O), zinc chloride (ZnCl₂), 3,3',5,5'tetramethyl-benzidine (TMB), isopropyl alcohol (IPA) and 2-methylimidazole(2-MI)
were provided by Aladdin. Methyl alcohol, zinc nitrate hexahydrate (Zn₂(NO₃)₂·6H₂O),
tethanol, potassium chloride (KCl), muriatic acid, glacial acetic acid, 30% hydrogen
peroxide, potassium dichromate (K₂Cr₂O₇), copper chloride dihydrate (CuCl₂·2H₂O),
sodium chloride (NaCl), anhydrous calcium chloride (CaCl₂) and magnesium chloride
hexahydrate (MgCl₂·6H₂O) were obtained from Sinopharm Chemical Regent. 8hydroxyquinoline (8-HQ), p-benzoquinone (PBQ), tryptophan (Trp), chromium
chloride hexahydrate (CrCl₃) and manganese chloride tetrahydrate (MnCl₂·4H₂O) were
purchased from Macklin, Cadmium chloride hemihydrate (CdCl₂·2.5H₂O) and
anhydrous sodium acetate manufactured by Sinopharm Shanghai Test.

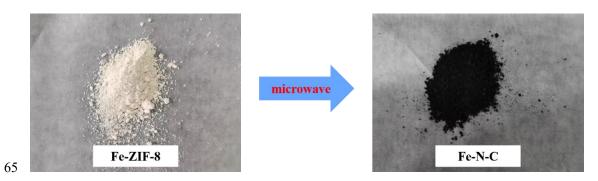
26 S1.2 Apparatus

Microscopic morphologies of samples were characterized by focused ion beamscanning electron microscopy (FIB-SEM) (Thermo, USA) and transmission electron
microscopy (TEM) (Thermo, USA). X-ray photoelectron spectroscopy (XPS) (Thermo,
USA) and X-ray absorption fine structure spectroscopy (XAFS) were conducted to
explore the elemental composition and their chemical states. The peroxidase-like
mechanism of Fe-N-C was verified by an Electron paramagnetic resonance (EPR)
(Bruker, Germany) spectrometer Ultraviolet-visible (UV-Vis) (SHIMADZ, Japan)
measurement was used to monitor the absorbance changes during the mimic enzyme

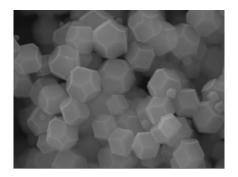
- 35 reaction process. Fluorescence (FL) (Edinburg, English) spectra was used to monitor
- 36 the fluorescence changes during the mimic enzyme reaction process. Inductively
- 37 coupled plasma optical emission spectrometer (ICP-OES) (Thermo, USA) was used to
- analyze Cr(VI) in environmental water samples.

39 S1.3 Enzyme mimicking activity of Fe-N-C

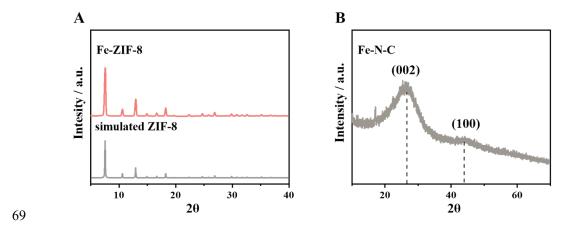
- 40 The oxidase-like catalytic activity of the Fe-N-C was assessed by the TMB color
- 41 reaction. Briefly, 20 μL of Fe-N-C (2.5 mg/mL) and 50 μL of TMB (10 mM) were
- 42 added to a 2mL centrifuge tube. This mixture was then diluted with 0.2 mol/L HAc-
- 43 NaAc buffer (pH 4.5) to a final volume of 1 mL. The reaction was allowed to proceed
- 44 for 5 min, and the absorbance at 652 nm was recorded. Similarly, the peroxidase-like
- 45 catalytic activity of the Fe-N-C were investigated by adding 20 μL of H₂O₂ to the above
- 46 reaction system while maintaining all other experimental conditions.


47 S1.4 Kinetic analysis

- 48 The experiments of kinetic parameters of the POD-like activity of Fe-N-C were
- 49 carried out under their optimal conditions and the concentration of the corresponding
- 50 substrate was changed in different enzymological active systems. The corresponding
- 51 initial velocities were obtained through the operation of time scan and the results were
- 52 calculated according to the Lineweaver-Burk equation:
- 53 $1/v = (K_m/V_{max}) \times (1/[C]) + 1/V_{max}(1)$
- Where v refers to the initial velocity, K_m and V_{max} are the Michaelis-Menten constant
- 55 and the maximum reaction velocity, respectively, and C is the substrate's
- 56 concentration^{1, 2}.


57 S1.5 Colorimetric detection of Cr(VI) in real samples

- We selected Yangtze River samples to estimate the feasibility of Cr(VI) detection by
- 59 the Fe-N-C colorimetric platform. The water source of the laboratory is taken as
- 60 Yangtze River sample is treated with 0.2 μm water filter to take out impurities. In order
- 61 to ascertain the Cr(VI) concentration, spiked concentrations of Cr(VI) (20 and 50 μM)
- 62 were added to the above solution. The absorption spectra were recorded by the UV-
- 63 visible after 5 min incubation at ambient temperature.


64 S2 Results and discussions

66 **Fig. S1.** Photographs of Fe-ZIF-8 and Fe-N-C.

Fig. S2. SEM image of Fe-ZIF-8.

Fig. S3. Powder XRD patterns of (A) Fe-ZIF-8 and (B) Fe-N-C.

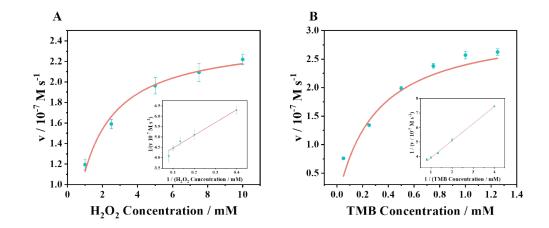
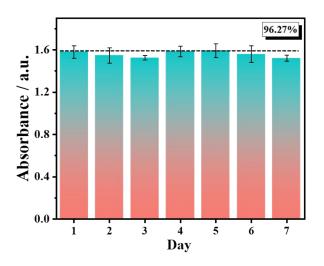
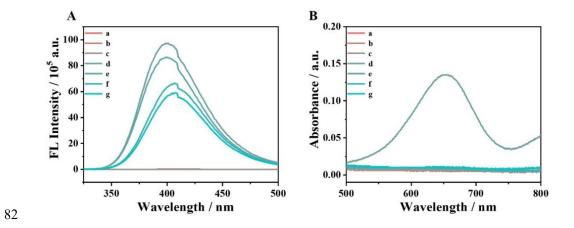
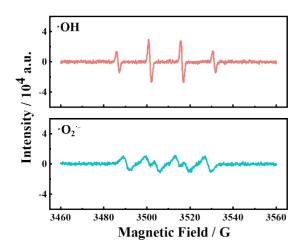



Fig. S4. (A) Kinetic curve and double-reciprocal plot of Fe-N-C with H_2O_2 as a substrate. (B) Kinetic curve and double-reciprocal plot of Fe-N-C with TMB as a substrate.


Table S1 Comparison of the kinetic parameters of the Fe-N-C and other nanozymes.

Catalyst	Substrate	K_{m} V_{max}		Def	
		(mM)	$(10^{-8} \mathrm{M s^{-1}})$	Ref.	
HRP	H_2O_2	3.70	8.71	3	
	TMB	0.43	10.00		
f-FeNC	H_2O_2	2.50	4.95	4	
	TMB	0.15	3.61		
Fe-N-C	H_2O_2	12.2	116.00	5	
	TMB	3.6	35.60		
Fe SAEs	H_2O_2	0.24	8.25	6	
	TMB	3.92	58.80		
Mn _{SA} -N ₃ -C	H_2O_2	1200	63.00	7	
	TMB	0.54	63.00		
Cu-N-C	H_2O_2	19.94	20.07	0	
	TMB	3.76	75.05	8	
Fe-N-C	H_2O_2	1.15	24.28	This work	
	TMB	0.29	31.13		


78 Fig. S5. POD activity of Fe-N-C in different days. (The ordinate is the absorbance of

Fe-N-C/TMB/ H_2O_2 system at the wavelength of 652 nm)

Fig. S6. (A) FL spectra and (B) UV spectra of a) H₂O₂, b) 8-HQ, c) H₂O₂+8-HQ, d)

84 TMB, e) TMB+ H_2O_2 , f) TMB+8-HQ, and g) TMB+ H_2O_2 +8-HQ.

Fig. S7. EPR signals for \cdot OH and \cdot O₂ detection of TMB/H₂O₂/8-HQ system.

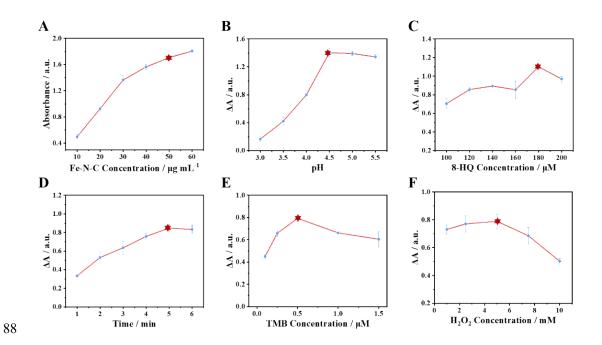


Fig. S8. The relationship between (A) Fe-N-C concentration, (B) pH value, (C) 8-HQ concentration, (D) illumination time, (E) TMB concentration, (F) H_2O_2 concentration and ΔA ($\Delta A = A_0$ -A, where A_0 and A respectively represent the absorbance at 652 nm of the TMB/ H_2O_2 /Fe-N-C system before and after adding 8-HQ).

Table S2 The comparison of properties of different methods for Cr (VI) detection based

94 on different materials.

Swatam	Method	Linear range LOD		Refs
System	Method	(μ M)	(µM)	Reis
CD/PVA	Fluorescence	0~60	0.64	9
KCQDs@SBA-15	Fluorescence	0~100	0.866	10
PEI-AgNCs	Colorimetry	5~300	1.1	11
Cu-PyC MOF	Colorimetry	0.5~50	0.051	12
GO/AuNPs	Colorimetry	0.1~15	0.153	13
H-Fe-POP	Colorimetry	2~130	0.23	14
Fe ₃ O ₄ @MQDs	Colorimetry	0~60	0.26	15
Fe-N-C	Colorimetry	1~130	0.13	This work

96 References

- 97 1. H. Ye, K. Yang, J. Tao, Y. Liu, Q. Zhang, S. Habibi, Z. Nie and X. Xia, ACS Nano,
- 98 2017, **11**, 2052-2059.
- 99 2. Y. Wang, T. Li and H. Wei, *Anal. Chem.*, 2023, **95**, 10105-10109.
- 100 3. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang,
- 101 S. Perrett and X. Yan, *Nat. Nanotechnol.*, 2007, **2**, 577-583.
- 102 4. C. Zhang, C. Chen, D. Zhao, G. Kang, F. Liu, F. Yang, Y. Lu and J. Sun, Anal.
- 103 *Chem.*, 2022, **94**, 3485-3493.
- 104 5. L. Jiao, W. Xu, H. Yan, Y. Wu, C. Liu, D. Du, Y. Lin and C. Zhu, Anal. Chem.,
- 105 2019, **91**, 11994-11999.
- 106 6. C. Zhao, C. Xiong, X. Liu, M. Qiao, Z. Li, T. Yuan, J. Wang, Y. Qu, X. Wang, F.
- Zhou, Q. Xu, S. Wang, M. Chen, W. Wang, Y. Li, T. Yao, Y. Wu and Y. Li, *Chem.*
- 108 *Commun.*, 2019, **55**, 2285-2288.
- 109 7. Y. Wang, A. Cho, G. Jia, X. Cui, J. Shin, I. Nam, K.-J. Noh, B. J. Park, R. Huang
- and J. W. Han, *Angew. Chem. Int. Ed.*, 2023, **62**, e202300119.
- 111 8. Y. Wu, J. Wu, L. Jiao, W. Xu, H. Wang, X. Wei, W. Gu, G. Ren, N. Zhang, Q.
- Zhang, L. Huang, L. Gu and C. Zhu, *Anal. Chem.*, 2020, **92**, 3373-3379.
- 113 9. Y. Chen, H. Cui, M. Wang, X. Yang and S. Pang, Colloids and Surfaces A:
- 114 *Physicochemical and Engineering Aspects*, 2022, **638**, 128164.
- 115 10. C. Jing, Z. Liu, S. Liu, B. Li, X. Li, J. Hu and B. Wang, *Microchem. J.*, 2024, **201**,
- 116 110726.
- 117 11. Q. Xue, X. Li, Y. Peng, P. Liu, H. Peng and X. Niu, Microchimica Acta, 2020,

- 118 **187**, 263.
- 119 12. S. Kulandaivel, W. Lo, C. Lin and Y. Yeh, Anal. Chim. Acta, 2022, 1227, 340335.
- 120 13. Y. Qi, B. Li, D. Song, F. Xiu and X. Gao, Spectrochimica Acta Part A: Molecular
- and Biomolecular Spectroscopy, 2023, **297**, 122722.
- 122 14. L. Zhu, F. Yang, C. Lou, X. Zhang and Y. Yang, Microchimica Acta, 2023, 190,
- 123 339.
- 124 15. Y. Cheng, P. Shen, X. Li, X. Li, K. Chu and Y. Guo, Sens. Actuators B Chem.,
- 125 2023, **376**, 132979.