Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Biomass-Derived Hard Carbon Anodes with Enhanced Capacity for Sodium-Ion Batteries

Huahua Zeng^{a#}, Juntao He^{a#}, Jinlian Zhang^a, Qinxuan Zeng^{a,b}, Ning Li^c, Ming Sun^{a,b*},
Lin Yu^{a,b}

^aGuangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

^bJieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China

^cCollege of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China

these two authors contributed equally

*To whom correspondence should be addressed: sunmgz@gdut.edu.cn;

1. Experimental

1.1Physical Characterization

Thermogravimetric analysis (TG Perkin Elmer) was performed to obtain the thermal stability data of the materials. The morphological features of the materials were observed using scanning electron microscopy (SEM, Phenom-world) and Higher resolution transmission electron microscopy (HRTEM, FEI Thermo). Specific surface area and other parameters were determined by nitrogen adsorption-desorption analysis (Quantachrome ASiQwin). The crystalline structure of the materials was investigated using X-ray diffraction (XRD Cu K α , $\lambda = 1.54056$ Å) and Raman spectroscopy (Rman LabRam HR Evolution). X-ray photoelectron spectroscopy (XPS Thermo Fisher) was employed to analyze the surface elemental composition of the materials. The total nitrogen content in both LHC and NLHC were measured by Organic

Element Analyzer (German, Elementar UNICUBE).

1.2 Electrochemical test

1.2.1 Half-Cell Performance Test

The electrochemical performance of the active materials was evaluated using CR2032 coin cells. The active material and polyvinylidene fluoride (PVDF) were mixed in a mass ratio of 8:2 and dispersed in N-methylpyrrolidone (NMP) to form a homogeneous slurry. The slurry was uniformly coated on carbon-coated aluminum foil using a spatula and then dried in a vacuum drying chamber at 60 °C for 12 h (The active mass loading in the electrode sheet is ca. 2 mg cm⁻²). The coated foil was cut into circular electrodes with a diameter of 10 mm. Sodium metal was used as the counter electrode, and a glass fiber membrane (Whatman GF/D) served as the separator. The electrolyte was 1 M NaPF6 in diglyme. The coin cells were assembled in an argon-filled glovebox ($H_2O < 0.1$ ppm, $O_2 < 0.1$ ppm). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were conducted using a CHI electrochemical workstation. Galvanostatic charge-discharge (GCD) testing, rate performance testing, long-term cycling testing, and galvanostatic intermittent titration technique (GITT) testing were performed using a LAND CT2001A battery testing system.

1.2.2 Full-Cell Performance Test

Negative electrode preparation: The active material and polyvinylidene fluoride (PVDF) were mixed in a mass ratio of 8:2 and dispersed in NMP to form a homogeneous slurry. The slurry was uniformly coated on copper foil using a spatula and dried in a vacuum drying chamber at 60 °C for 12 h. The coated foil was cut into circular negative electrodes with a diameter of 10 mm. Sodium metal was used as the counter electrode to assemble CR2032 coin cells, and the negative electrode was activated by cycling at 30 mA g⁻¹ for 3 cycles. After activation, the negative electrode was removed from the coin cell in the glovebox and stored for later use.

Positive electrode preparation: Commercial Na₃V₂(PO₄)₃ (NVP) was used as the active material for the positive electrode. NVP and PVDF were mixed in a mass ratio

of 8:2, and an appropriate amount of NMP was added and ground for 1 h to form a viscous, particle-free slurry. The slurry was uniformly coated on aluminum foil using a spatula and dried in a convective drying oven at 60 °C. The electrode was then cut into circular positive electrodes with a diameter of 14 mm and further dried in a vacuum drying chamber at 60 °C for 12 h.

The CR2032 coin cell was assembled in the following order: negative electrode casing, negative electrode, electrolyte, GF/D separator, electrolyte, positive electrode, spacer, spring, and positive electrode casing. The electrolyte used was 1 M NaPF6 in diglyme.

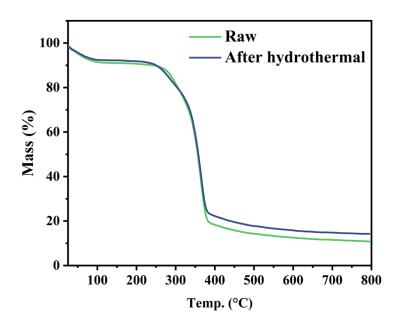


Fig.S1 The TG curves of fresh and hydrothermal treated loofah

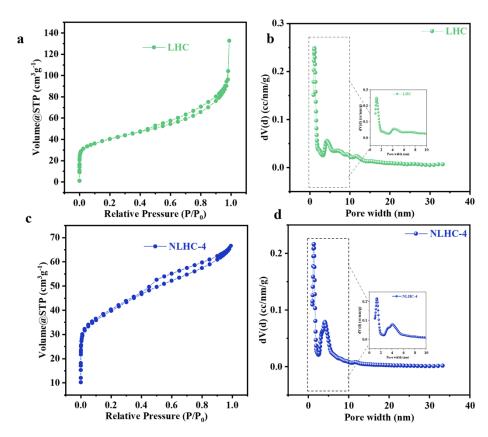


Fig.S2 the absorption and desorption curves of (a) LHC and(b) NLHC; the pore size distributions of (c) LHC and (d) NLHC

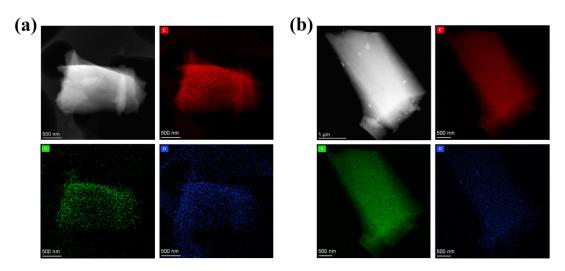


Fig.S3 the element distribution of (a) LHC and (b) NLHC

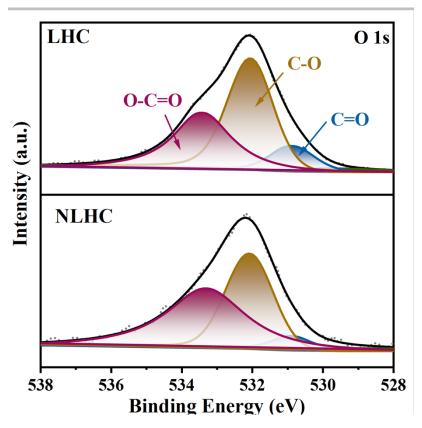


Fig.S4 O1s spectra of LHC and NLHC

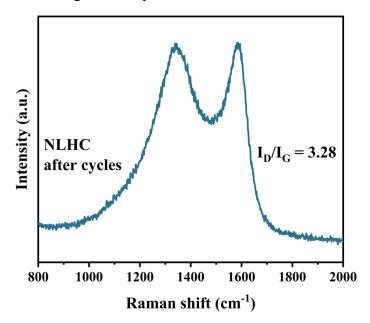


Fig.S5 the Raman of spectra of NLHC after cycling

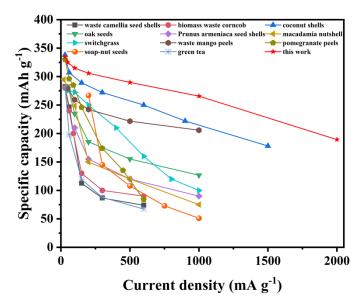


Fig.S6 Reported specific capacities of biomass-derived hard carbon materials for sodium-ion storage.

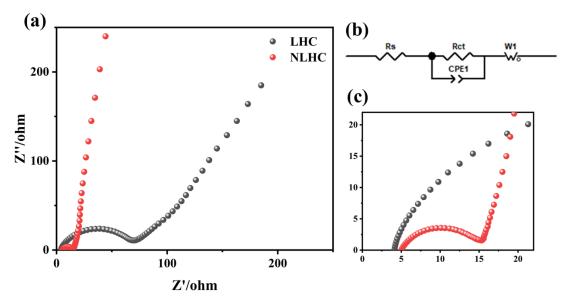


Fig. S7 the EIS curves of (a) LHC and NLHC; (b) the simulated circuit diagram; (c) enlarged EIS curves

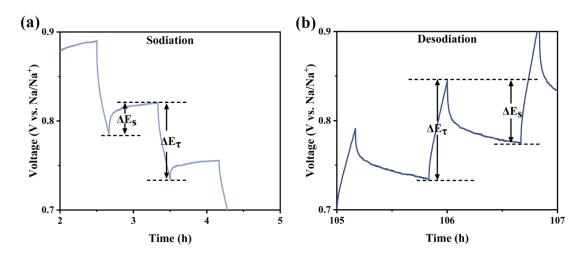


Fig. S8 the obtained ΔE_S and ΔE_τ from GITT curves

Table S1 the impurity of K^+ and Ca^{2+} ions in the carbon materials tested by ICP

	LHC	NLHC-2	NLHC-3	NLHC-4	NLHC-6
K ⁺	1340.785	1098.646	1074.834	924.305	905.694
Ca ²⁺	35375.46	3969.183	2826.447	1720.256	820.673

Noted: (1) the unit is mg/Kg. (2) NLHC-X, the X means the concentration of NH₄Cl is X mol/L.

Table S2 the surface element content of LHC and NLHC by EDS and total nitrogen

content	2112	17010
content	ama.	ryoro
		,

Sample	C(at%)	O(at%)	N(at%)*	N(%)#
LHC	93.09	6.55	0.36	0.39
NLHC	90.18	8.96	0.86	0.47

Noted: *tested by EDS. #tested by total nitrogen content analysis

Table S3. Sodium storage performance of previously reported biomass-derived hard carbon materials

Precursor	Treatment	Carbonization	Current density (mA g ⁻¹)	Specific capacity (mAh g ⁻¹)	ICE(%)	Ref.
			30	282.4		
	pre-carbonized at 600 °C for 2 h; immersed and stirred in 2 M HCl for 6 h	pyrolyzed at 1200, 1300 or 1400 °C for 2 h in Ar flow	60	246.5		
waste camellia			150	112.5	00.1	[1]
seed shells			300	86.6	80.1	
			600	73.9		
			30	270 after 200 cycles		
	carbonization at	heated to 1150, 1300, 1450 °C for 2 h under Ar airflow	30	280		[2]
	500 °C for 2 h under an Ar airflow; treated successively with 2 M HCl, 2 M NaOH, and		60	240		
biomass			90	200		
waste corncob			150	130	79.6	
			300	100		
			600	90		
	5% HF; wash till pH=7		30	250 after 100 cycles		
coconut	carbonization at	calcined at 300	30	338	69.8	[3]

shells	1300 °C;	°C for 2 h in an	60	307		
	powder was	argon	150	289		
	mixed thoroughly with	atmosphere	300	272		
	urea by ball		600	250		
	milling at 300		900	222		
	rpm for 5 h		1500	178		
			600	199 after 300 cycles		
			50	283.2		
	immersed in a certain		100	234.7		
1 1	concentration	carbonization at	200	185.3	less than	[4]
oak seeds	of 15% HF for	1300 °C for 6 h	500	155.2	30	[+]
	12 h after carbonization		1000	126.7		
	caroonization		1000	119.9 after 1000 cycles		
		carbonization at	100	210.2		
Prunus	pulverized to a	1000, 1100 or 1200 °C for 5 h under N ₂ flow	200	about 155	not	[5]
armeniaca seed shells	partical size of 74 μm		500	about 120	found	
			1000	about 90		
	add macadamia		20	294.78		
	nutshell into a	carbonization at	50	281.06		
	solution of lactic acid and betaine; stirred for hours; washed and dried		100	248.38	62.36	[6]
macadamia nutshell			200	about 150		
natshen			500	about 120		
			1000	about 75		
			100	below 250 after 200 cycles		
			50	about 275		
	grind switchgrass to		100	272.2		
			200	about 250		
avvitale amaga	1mm powders;	carbonized at	400	about 210	010	[7]
switchgrass	hydrothermal	1600 °C	600	about 160	84.8	[/]
	treatment at 220 °C for 12 h		800	about 120		
	220°C for 12 h		1000	under 100		
			100	308.4 after 100 cycles		
waste	dried and	calcined at 1000	50	279.13		F07
mango peels	ground to powders;	°C for 2 h	100	259.30	70.39	[8]

	dispersed in deionized		200	242.17		
	water;		500	221.63		
	hydrothermal treatment at		1000	205.82		
	200 °C for 24 h; washed by 1 M HCl		1000	250.35 after 1000 cycles		
			30	330		
			60	296		
			90	about 285		
pomegranate	washed by HCl	carbonized 900,	150	246	44.0	[0]
peels	and HF after carbonization	1000, 1100, 1200 or 1300 °C	300	174	44.8	[9]
	Caroomzation	1200 01 1300 C	450	about 135		
			600	84		
			150	175 after 200 cycles		
	carbonized at		200	267		[10]
	500 °C under N ₂ ; planetary milling at 600 rpm for 8 h; washed by HCl and DI water; dried at 100 °C overnight	pyrolyzed at 600, 700, 800 or 900 °C under N_2	300	145	26.79	
			500	108		
soap-nut seeds			750	73		
seeus			1000	51		
			300	83 after 500 cycles		
	soaked in 100		30	282.4		
	°C DI water; dried; ground to powder; washed 1 M	carbonized at 1000, 1200, 1400 and 1600 °C	60	197.7		
green tea			150	119.4	69	[11]
green tea			300	87.7	09	[11]
	HCl for 5 h at		600	67.3		
	60 °C		100	205 after 100 cycles		
			30	334.8		
		carbonized at 1300 °C for 2 h under Ar gas	50	324.9		
	hydrothermal treatment in 4 M NH ₄ Cl		100	315		
this work			200	305.8	71.92	/
			500	289.8		
			1000	265.7		
			2000	189.2		

Table S4: Reported energy density or cycle performance of full cells of sodium-ion batteries based on hard carbon

Precursor	Cathode	energy density	Reference
Porphyra	Na ₃ V ₂ (PO ₄) ₃ @C	69.4 mAh g ⁻¹ at 100 mA g ⁻¹ after 100 cycles	[12]
Hard carbon (Merck group)	$Na_3V_2(PO_4)_2F_3$	352.49 Wh kg ⁻¹	[13]
Spent Coffee Grounds	$Na_{0.44}MnO_2$	440-490 Wh kg ⁻¹	[14]
Waste foam-derived carbon from waste tea, moroccan argan shells, jute silk waste, lotus stem and navel orange peel	$Na_3V_2(PO_4)_3$	205.9 Wh kg ⁻¹	[15]
Corn starch	$Na_3V_2(PO_4)_3$	268.81 Wh kg ⁻¹	[16]
Corn stover	$NaNi_{1/3}Fe_{1/3}Mn_{1/3}O_{2} \\$	118 mAh g^{-1} at 80 mA g^{-1}	[17]
Waste Camellia semiserrata shell	$NaFe_{1/3}Ni_{1/3}Mn_{1/3}O_2$	150 mAh g ⁻¹ at 500 mA g ⁻¹ after 100 cycles	[18]
Olive shells	$Na_2Fe(Fe(CN)_6)$	320 mAh g ⁻¹ at 50 mA g ⁻¹	[19]
Pomegranate peel	$Na_3V_2(PO_4)_3$	110 mAh g ⁻¹ at 40 mA g ⁻¹	[20]
This work	$Na_3V_2(PO_4)_3$	101.2 mAh g ⁻¹ at 500 mA g ⁻¹ after 200 cycles	/

References

- [1] Peng J, Tan H, Tang Y, et al. The induced formation and regulation of closed-pore structure for biomass hard carbon as anode in sodium-ion batteries [J]. Journal of Energy Storage, 2024.
- [2] Tang Y, He J, Peng J, et al. Electrochemical Behavior of the Biomass Hard Carbon Derived from Waste Corncob as a Sodium-Ion Battery Anode [J]. Energy & Fuels, 2024.
- [3] Xiang J, Ma L, Sun Y, et al. Ball-Milling-Assisted N/O Codoping for Enhanced Sodium Storage Performance of Coconut-Shell-Derived Hard Carbon Anodes in Sodium-Ion Batteries [J]. Langmuir, 2024.
- [4] Ding J, Zhang Y, Huang Y, et al. Sulfur and phosphorus co-doped hard carbon derived from oak seeds enabled reversible sodium spheres filling and plating for ultra-stable sodium storage [J]. Journal of Alloys and Compounds, 2021.
- [5] Oktay Z M, Onal Y, Depci T, et al. Investigation of electrochemical performance of Na-ion batteries by hard carbon anodes produced by biomass of Prunus armeniaca seeds [J]. Journal of Materials Science: Materials in Electronics, 2023.
- [6] Wang Q, Du L, Wang S, et al. Biomass-Derived Hard Carbon Anodes Processed with Deep Eutectic Solvents for High-Performance Sodium-Ion Batteries [J]. ACS Omega, 2025.
- [7] Li Y, Xia D, Tao L, et al. Hydrothermally Assisted Conversion of Switchgrass into Hard Carbon as Anode Materials for Sodium-Ion Batteries [J]. ACS Applied Materials & Interfaces, 2024.
- [8] Liu J, Zhang Z, Yin Y, et al. A mango peel-derived hard carbon as high-performance anode material for sodium-ion batteries [J]. Journal of Industrial and Engineering Chemistry, 2025.
- [9] Wu Q, Shu K, Zhao L, et al. Pomegranate Peel-Derived Hard Carbons as Anode Materials for Sodium-Ion Batteries [J/OL] 2024, 29(19).
- [10] Khatua S, Achary K R, Rao Y B, et al. Physicochemical activation of soap-nut seeds-derived hard carbon as a sustainable anode for lithium-ion batteries [J]. New Journal of Chemistry, 2024.
- [11] Pei L, Cao H, Yang L, et al. Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries [J]. Ionics, 2020.
- [12] Hu X, Fan X, Mou Z, et al. Controlled synthesis of multi-doped highly-disordered porous biomass carbon microsphere for ultra-stable and fast sodium storage [J]. Journal of Energy Storage, 2024.
- [13] Mahato S, Das A, Biswas K. Experimental and theoretical investigation on boron, phosphorus dual doped hard carbon as anode for sodium-ion battery [J]. Journal of Energy Storage, 2024.
- [14] Pianta N, Florenzano D A, Lorenzi R, et al. Hard Carbon Derived from Spent Coffee Grounds for Applications in Sodium Ions Batteries [J]. Advanced Sustainable Systems, 2025.
- [15] Chen Y, Sun H, He X X, et al. Pre-Oxidation Strategy Transforming Waste Foam to Hard Carbon Anodes for Boosting Sodium Storage Performance [J]. Small, 2023.
- [16] Zhong H, Huang Q, Zou M, et al. From food to hard carbon: Citric acid enhanced biomass-derived anodes for high-performance sodium storage [J]. Chemical Engineering Journal, 2025.
- [17] Wang Y, Li M, Zhang Y, et al. Defect-rich hard carbon designed by heteroatom escape assists sodium storage performance for sodium-ion batteries [J]. Chemical Engineering Journal, 2024.
- [18] Huang J, Zhang Q, Yuan M, et al. A distinctive edge-graphited hard carbon for advanced sodium-ion batteries [J]. Journal of Materials Chemistry A, 2025.
- [19] Zhou L, Cui Y, Niu P, et al. Biomass-derived hard carbon material for high-capacity sodium-ion battery anode through structure regulation [J]. Carbon, 2025.

Wu Q, Shu K, Zhao L, et al. Pomegranate Peel-Derived Hard Carbons as Anode Materials for

Sodium-Ion Batteries [J]. Molecules, 2024.

[20]