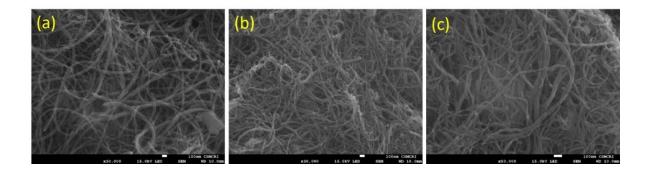
Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2025


Supporting Information

Synergistic CoFe₂O₄ Spinel–Cobalt Phthalocyanine–Carbon Nanotube Hybrid Catalyst for Highly Selective Electrochemical Nitrate-to-Ammonia Conversion

Ningma Dorzi Sherpa,^a Hiren Jungi,^b Shakil Ahammad Chowdhury,^c Hiranmay Barma^a and Dr. Nitish Roy^{a,*}

^{*} Corresponding author

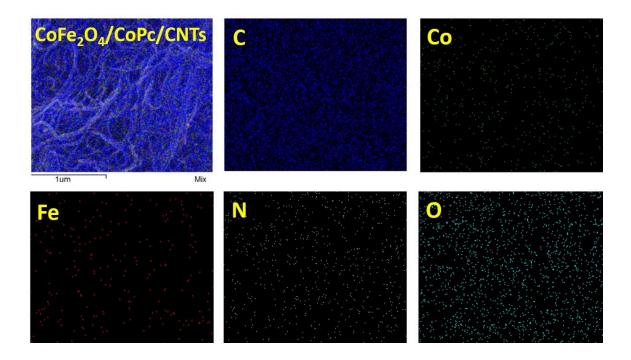
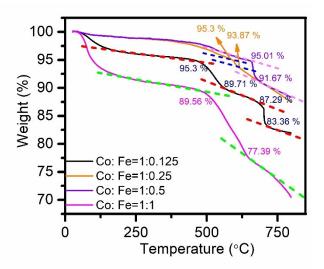

^aLaboratory for Sustainable Energy Conversion, Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal-734013

Figure S1. FESEM images of the different CoFe₂O₄/CoPc/CNT samples prepared by varying (Co(NO₃)₂·6H₂O: FeSO₄·7H₂O (a) Co:Fe = 1:1, (b) Co:Fe = 1:0.5 and (c) Co:Fe = 1:0.25 keeping other reaction parameters constant.

^b Inorganic Materials And Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat-364002, India


^cMaterials Science Centre, Indian Institute of Technology Kharagpur, W. B.-721302, India

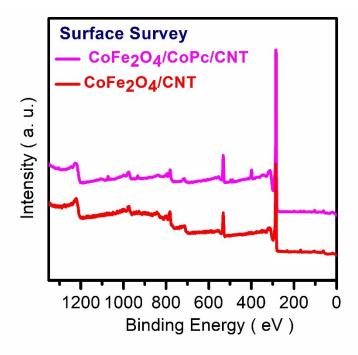
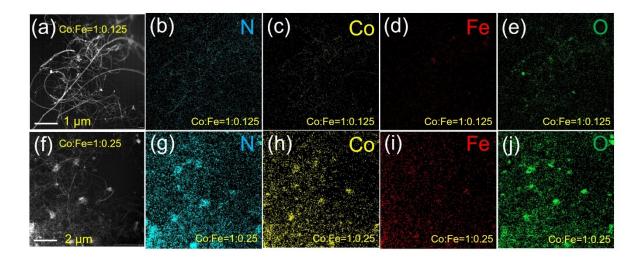

Figure S2. Elemental mappings of the CoFe₂O₄/CoPc/CNT samples prepared by using 1 mmole (Co(NO₃)₂·6H₂O and 0.125 mmole FeSO₄·7H₂O keeping other reaction parameters constant. Insets display the overlapped elements or the individual element as mentioned.

Table S1: Table of weight loss (%) during TGA for the different samples


(Molar ratio)	Initial	Weight loss due	Weight loss due	Weight loss
	Weight	of CoPc at first	of CoPc at	due to CoPc
	loss (%)	segment (%)	Second segment	(%)
			(%)	
Co:Fe=1:0.125	4.7	7.5	4.4	12.48
Co:Fe=1:0.25	2.3	5.7	3.3	9.21
Co:Fe=1:0.5	1.9	2.7	5.4	8.26
Co:Fe=1:1	10.4	12.4	2.9	17.1

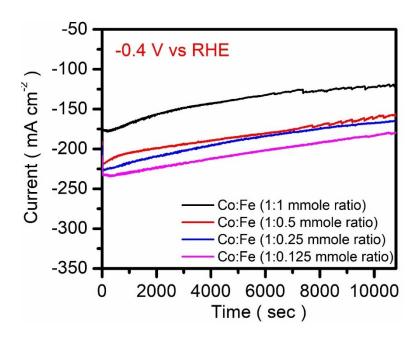
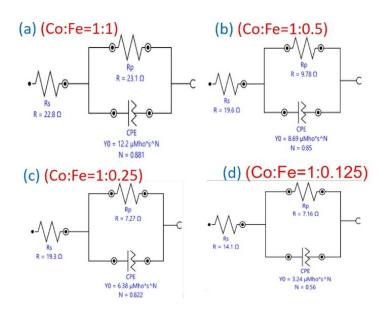

Figure S3. TGA plots of the catalyst, CoFe₂O₄/CoPc/CNT synthesised using different molar ratio (Co:Fe=1:1, 1:0.5, 1:0.25 and 1:0.125)

Figure S4. XPS survey spectrum of CoFe₂O₄/CoPc/CNT and CoFe₂O₄/CNT synthesized using 1 mmole Co(NO₃)₂·6H₂O and 0.125 mmole FeSO₄·7H₂O with and without H₂Pc keeping other reaction parameters fixed.


Figure S5. STEM image and corresponding EDS elemental mapping of different elemenets obtained from samples $CoFe_2O_4/CoPc/CNT$ synthesized using Co:Fe = 1:0.125 and Co:Fe = 1:0.25, respectively.

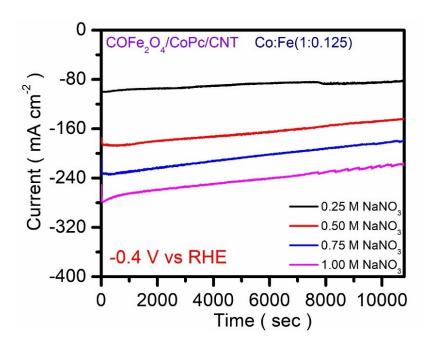
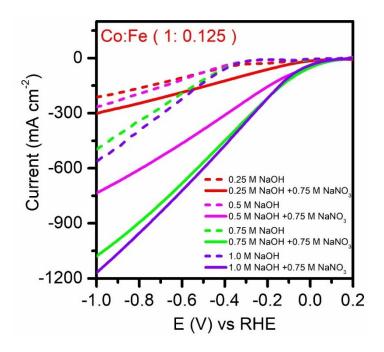

Figure S6. Chronoamperometry plots of the different CoFe₂O₄/CoPc/CNT samples prepared by varying (Co(NO₃)₂·6H₂O (1 mmole): FeSO₄·7H₂O (1 to 0.125 mmole) mole ratio as mentioned keeping other reaction parameters constant) at -0.4 V vs RHE for 3 h.

Table S2: Table of the Rs, Rp and CPE of different samples synthesised using different molar ratio (Co:Fe=1:1, 1:0.5, 1:0.25 and 1:0.125)


(Molar ratio)	Rs (Ω)	Rp (Ω)	CPE (Ω)
Co:Fe=1:1	22.8	23.1	12.2
Co:Fe=1:0.5	19.6	9.78	8.69
Co:Fe=1:0.25	19.3	7.27	6.38
Co:Fe=1:0.125	14.1	7.16	3.24

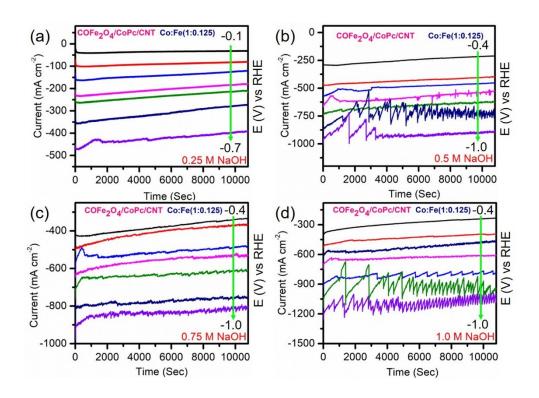

Figure S7. (a-d) Equivalent Circuit diagram of the catalyst, CoFe₂O₄/CoPc/CNT synthesised using the molar ratio Co:Fe=1:1, 1:0.5, 1:0.25 and 1:0.125.

Figure S8. Chronoamperometry plots of the optimized CoFe₂O₄/CoPc/CNT catalyst variation performed using various NaNO₃ concentration at -0.4 V vs RHE for 3 h.

Figure S9. LSVs plots of the optimized catalyst, $CoFe_2O_4/CoPc/CNT$ with molar ratio (Co:Fe=1:0.125) in different electrolyte concentration (0.25 M , 0.5 M, 0.75 M and 1.0 M) NaOH.

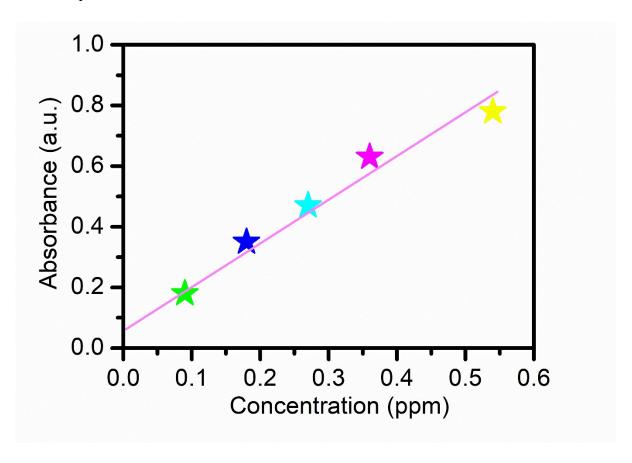


Figure S10. (a-d) Chronoamperometry plots of the optimized CoFe₂O₄/CoPc/CNT catalyst at different cathodic potential (V vs RHE) by varying the electrolyte concentration (0.25 M, 0.5 M, 0.75 M and 1.0 M) NaOH.

Detection of NH₃

To quantify NH₃ produced during the electrochemical nitrate reduction, the electrolyte collected after chronoamperometric measurements was diluted 20-fold. The indophenol blue method was employed for NH₃ determination. Specifically, 1 mL of the diluted electrolyte was mixed with 17 mL of distilled water, 0.5 mL of phenolic solution (5% phenol in ethanol), 0.5 mL of 0.1 M sodium nitroprusside [Na₂[Fe(CN)₅NO]], and 1 mL of NaClO solution (prepared using a 4:1 molar ratio of alkaline solution to NaClO). The mixture was kept in the dark for 30 minutes to allow the formation of an intense blue color. The resulting solution was further diluted 10-fold, and its absorbance was recorded at 655 nm. Calibration was performed with standard NH₄Cl solutions as shown in Figure S6, which showed good linearity. The absorbance

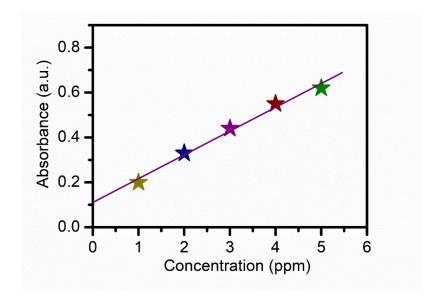

at 655 nm was then used to quantify the NH₃ concentration in the electrolyte after chronoamperometric studies.

Figure S11. Linear relationship of absorbance of the Indo-phenol complex with NH₃ concentration at 655 nm.

Determination of NO₂-

To quantify nitrite (NO₂⁻) as a by-product during the electrochemical nitrate reduction, the electrolyte collected after chronoamperometric measurements was diluted 50-fold. Nitrite concentration was determined using the Griess test combined with UV–Vis spectroscopy. The Griess reagent was prepared by dissolving 0.1 g of N-(1-naphthyl)ethylenediamine dihydrochloride, 1.0 g of sulfanilamide, and 2.94 mL of H₃PO₄ in 50 mL of deionized water. For the measurement, 1 mL of the diluted electrolyte was mixed with 1 mL of Griess reagent and 2 mL of deionized water at room temperature, and the mixture was allowed to stand for 20 minutes to develop a pink color. The absorbance was recorded at 540 nm and compared with reference standards to determine the nitrite concentration. Calibration plot is shown in Figure S7.

Figure S12. Linear relationship of absorbance of the azo dye complex with nitrite concentration at 540 nm.

Calculation of the FE for NH₃

$$\label{eq:Faradaic Efficiency } \begin{split} \textit{Faradaic Efficiency \%} &= \frac{\textit{Ammonia produced per total charge passed}}{\textit{Total charge passed}} \\ &= \frac{\textit{Total charge passed}}{\textit{Total charge passed}} \\ \textit{Faradaic Efficiency \%} &= (8 \times [\text{NH}_3] \times \text{V} \times \text{N}_A) \times 100 \text{ \%/ (M}_{\text{NH}3} \times \text{A} \times \text{t} \times \text{C})} \\ &\text{Yield of NH}_3 &= (8 \times [\text{NH}_3]) \times \text{V/ (M}_{\text{NH}3}). \end{split}$$

Where, $[NH_3]$ is concentration of ammonia, V is volume of electrolyte solution, N_A is Avogadro number, M_{NH3} is malar mass of ammonia, A is current, t is total time of electrolysis and C is coulomb.

Calculation of FE for Nitrite

$$\label{eq:Faradaic Efficiency } \begin{split} &Faradaic \ \textit{Efficiency }\% = \frac{\textit{Nitrite produced per total charge passed}}{\textit{Total charge passed}} \\ &Faradaic \ \textit{Efficiency }\% = (2 \times [\text{NO}_2^-] \times \text{V} \times \text{N}_{\text{A}}) \times 100 \ \% / \ (\text{M}_{\text{NH3}} \times \text{A} \times \text{t} \times \text{C}) \end{split}$$

$$\text{Yield of NO}_2^- = (2 \times [\text{NO}_2^-] \times \text{V}) / \ (\text{M}_{\text{NaNO2}}). \end{split}$$

Where $[NO_2^-]$ is the concentration of nitrite