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Figure S2

Q-TOF ESI Mass spectra of [Co(III)(L')(phen-NH2)](acac)s
recorded in CH30H using Waters Micromass Q-Tof Micro spectro-
photometer. The peak at m/z 164.1650 corresponds to the species
[M]** The inset shows the isotropic distribution of the peak at
164.0366 of [Co(III)(L")(phen-NH3z)](acac)s
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Figure S3
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bond recorded using Perkin-Elmer UATR TWO FT-IR Spectrometer
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Figure S4

'"H NMR spectra of [Co(III)(L")(phen-NH2)](acac)s recorded in
DMSO-ds using Bruker Avance 400 (400 MHz)
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Figure SS

Q-TOF ESI Mass spectra of [Pt(I)(DABA)CI:| recorded in CH3;OH
using Waters Micromass Q-Tof Micro spectro-photometer. The peak at
m/z 380.9736 corresponds to the species [M-CI-H]" and 416.9470
correspond to [M]" of complex [Pt(II)(DABA)Cl:]
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Figure S6

FT-IR Spectra of [Pt(I)(DABA)Cl:] with characteristic peaks at
1710-1720 cm? and 3439-2929 cm’' representing carbonyl bond,
amine bond, and hydroxyl (O-H) bond recorded using Perkin-Elmer
UATR TWO FT-IR Spectrometer
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Figure S7

"H NMR spectra of [Pt(I)(DABA)CI:] recorded in DMSO-ds using
Bruker Avance 400 (400 MHz)
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Figure S8

Q-TOF ESI Mass spectra of [Co(III)-Pt(II)](acac); recorded in
CH3;0H using Waters Micromass Q-Tof Micro spectro-photometer.
The peak at m/z 297.1471 corresponds to the species [M]** of complex
[Co(I1T)-Pt(IT)](acac)s
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Figure S9

FT-IR Spectra of [Co(III)-Pt(II)](acac)s with characteristics peaks at
1656 cm™ ;1669 cm™ and 3338 cm! representing imine bond, carbonyl
bond and amine bond recorded using Perkin-Elmer UATR TWO FT-
IR Spectrometer
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Figure S10

'"H NMR spectra of [Co(III)-Pt(II)](acac)s recorded in DMSO-ds
using Bruker Avance 400 (400 MHz)
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Figure S11

Stability study of [Co(IID)-Pt(II)](acac)s (1 mmolL') in 2%
DMSO/PBS buffer at pH 7.4 by UV-visible spectroscopy.
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Figure S12

Cyclic Voltammogram and Differential Pulse Voltammogram of
[Co(IIT)(L")(phen-NH2)](acac)s using solution (20 mL (1mM)) in 2%
DMSO-PBS buffer at 298 K using Glassy Carbon electrode as
working electrode, Ag/AgCl electrode as reference electrode and Pt
electrode as counter electrode and KCl 0.1 M as supporting
electrolyte, at scan rate 50 mV/s.
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Figure S13

Cyclic Voltammogram of [Pt(I)(DABA)CIl:] using solution (20 mL
(ImM)) in 2% DMSO-PBS buffer at 298 K using Glassy Carbon
electrode as working electrode, Ag/AgCl electrode as reference
electrode and Pt electrode as counter electrode and KCl 0.1 M as
supporting electrolyte, at scan rate 50 mV/s.
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Figure S14

Cyclic Voltammogram and Differential Pulse Voltammogram of
[Co(IID)-Pt(IT)](acac)s using solution (20 mL (1mM)) in 2% DMSO-
PBS buffer at 298 K using Glassy Carbon electrode as working
electrode, Ag/AgCl electrode as reference electrode and Pt electrode
as counter electrode and KCI 0.1 M as supporting electrolyte, at scan
rate 50 mV/s.
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Figure S15

Stability study of [Co(III)-Pt(II)](acac)s in Cyclic Voltammogram for
30 min using solution (20 mL (ImM)) in 2% DMSO-PBS buffer at
298 K using Glassy Carbon electrode as working electrode, Hg/Hg,Cl
» electrode as reference electrode and Pt electrode as counter electrode
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and KC1 0.1 M as supporting electrolyte, at scan rate 0.5 V/s.

Figure S16

Study of electrochemical behaviour of [Co(III)-Pt(I)](acac); in
Cyclic Voltammogram at different scan rate using solution (20 mL
(ImM)) in 2% DMSO-PBS buffer at 298 K using Glassy Carbon
electrode as working electrode, Hg/Hg,Cl » electrode as reference
electrode and Pt electrode as counter electrode and KCI 0.1 M as
supporting electrolyte.
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Figure S17

A linear relationship between the cathodic peak current (I,) and the

square root of the scan rate (v!/?) indicates diffusion-controlled
electron transfer. Fitting was performed using linear regression.
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Figure S18

Photoluminescence plot and Scatchard plot of [Co(III)-Pt(IT)](acac)s
for BSA binding.
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Figure S19

Molecular Docking interaction map of [Co(II)-Pt(II)](acac)s with
BSA
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Figure S20

Q-TOF ESI Mass spectra recorded for the methanolic solution of
[Co(IID)-Pt(II)] and GSH (10 mM) using Waters Micromass Q-Tof
Micro spectro-photometer. The peak at m/z 612.0640 corresponds to
[Pt(I1)+NH4] 'moiety released after reduction of Co(IIT) to Co(II).
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Figure S21

Q-TOF ESI Mass spectra of complex-GSH adduct recorded for the
methanolic solution of [Co(IIl)-Pt(II)] and GSH (10 mM) using
Waters Micromass Q-Tof Micro spectro-photometer. The peak at
845.1919 m/z corresponds to [PtGSH-CI-H] confirming the
coordination of GSH in the Pt centre.
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Figure S22

Q-TOF ESI Mass spectra of complex-GMP adduct recorded for the
methanolic solution of [Co(II)-Pt(II)], GSH (10 mM), and GMP using
Waters Micromass Q-Tof Micro spectro-photometer. The peak at m/z
906.4011 corresponds to [PtGMP-OH]" adduct, confirming the
coordination of GMP to the platinum centre after reduction-
induced Pt release.
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Figure S23

Q-TOF ESI Mass spectra of complex-GMP adduct recorded for the
methanolic solution of [Co(III)-Pt(Il)] and GMP using Waters
Micromass Q-Tof Micro spectro-photometer. The peak at m/z
280.3149 corresponds to the tetracationic species [M—POsH>]*,
consistent with coordination of GMP to the platinum center.
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Figure S24

Non-linear regression plot for cellular viability data in A549 cells for
[Pt(ID)(DABA)CL:] and [Co(III)(L')(phen-NH2)](acac)s using
GraphPad Prism 5 for a period of 24h, 48 h and 72 h. Both complexes
exhibit significant reductions in cell viability with increasing
concentrations. Data are expressed as mean + standard deviation.

520

Figure S25

Non-linear regression plot for cellular viability data in AS549
(hypoxia), MCF-7, HaCaT, HT-29, and MDA-MB-231 cells using
GraphPad Prism 5. Data are expressed as mean + standard deviation.
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Figure S26

Q-TOF ESI Mass spectra recorded for the methanolic solution
after the treatment of the [Co(III)-Pt(Il)] complex with GSH
using Waters Micromass Q-Tof Micro spectro-photometer. The
peak at m/z 351.1207 is assigned to [Co(II)L!(H20).], indicating
reduction of Co(IIl) and release of the Pt(II) moiety
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Figure S27

UV-Vis spectra of Co(IlI)L1(phen-NH2) recorded upon
addition of GSH (50-400 uM). There is a decrease in the
LMCT band in the 350-400 nm region, indicating a possible
reduction of Co(IIl) to Co(Il). The increase in the 280-290 nm
region is attributed to ligand-centered m-n* transition of
phenanthroline, suggesting partial ligand dissociation.
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Figure S28

UV-Vis spectral changes of [Pt(I)(DABA)CI:] upon step-wise
addition of GSH (15- 150 uM). The progressive decrease in the
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650-750 nm band indicates the reduction/substitution of the
original Pt complex by GSH.

Figure S29 "H NMR and '3C NMR of L1 recorded in CDCl; using Bruker Avance | S23-S24
400 MHz spectrometer. The Peaks are per the reported value.

Figure S30 Non-linear regression plot for cellular viability of cis-platin, L' and L? | S25
data in A549 (hypoxia),

Figure S31 Time-dependent (0 to 6 hours) UV-Vis spectra of GSH (1 mM) | S26
recorded under the same experimental conditions used for the reaction
with the Co-Pt complex

Figure S32 The isotopic distribution spectrum showing a minor peak at m/z | S26
612.1514, corresponding to [Pt(II) + NH4]*, and a much more intense
peak at m/z 611.1425, which may correspond to the isotopic pattern of
the peak.

Figure S33 Cyclic Voltammogram of GSH using Ag/AgCl electrode as reference | S27
electrode A) Negative Reduction half scan; B) Positive Oxidation half
scan.

Figure S34. Cathodic and Full scan of cyclic voltammogram of Co(IIl)-Pt(I) | S27
complex (150uM) with increasing concentration of GSH (0- 500 uM).

Figure S35. Simulated mass spectra showing isotropic distribution of the ion (a) | S29
[M+NH4]", M=[Pt(I)(C19HsNsO)Cl;] at 612 (b) [M-CI]', M=
[Pt(II)(C19H1sNsO)(GSH)CI] at 845 using mMass free software.
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Methods

BSA Binding

BSA (Bovine Serum Albumin) transports administered drugs into the bloodstream to the target site.
Therefore, it is necessary to identify the ability of the complex to bind with BSA as a model for
human serum albumin. The binding ability was assessed using a photoluminescence emission at 339
nm (Ax=280 nm) in HITACHI F-7000 fluorescence spectrophotometer at 298K. The emission
property of BSA comes from the presence of tryptophan, tyrosine, and phenylalanine residue. The
gradual addition of complexes (1 mM) to a solution of BSA (3 X 10° M) in 10 mM Tris-HCI buffer
7.2 pH significantly quenched the emission intensity of BSA. The binding constant of the two

complexes was determined using the Stern-Volmer equation and the Scatchard plot.

Where [ is the fluorescence intensity of BSA, Iy is the fluorescence intensity after adding complex to

BSA, K, is the Stern-Volmer quenching constant, [Q] is the concentration of complex, K is the rate

1
7 =1+Kg[Q] =1+ Kyo[Q]

constant and T, is the average lifetime.5!

Molecular Docking Studies.
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The molecular geometry optimization of complex [Co(III)-Pt(II)] was carried out using Gaussian 09
DFT methods with B3LYP functional and basic set 6-31+G(d,p) for H,C,N,O and Cl atoms,
LANL2DZ for Cobalt atom and SDD for Platinum atom. The crystal structure of BSA was obtained
from Protein Data Bank (PDB ID: 3v03) at a resolution of 2.70 A. Docking calculations were
performed by using AutoDock 1.5.6 using Lamarckian genetic algorithm (LGA). Discovery studio
was used to produce molecular images. The three dimensional (x,y,z) grid box was set at 126 A x 78
A x 98 A with spacing 0.375 A to focus all binding site in the BSA. Polar hydrogens were added and

Kollman charges were calculated.
Electrochemical analysis

Electrochemical properties of [Co(IITI)(L')(phen-NH)](acac)s, [Pt(II)(DABA)Cl;] and [Co(I1I)-
Pt(IT)] (acac)s were analyzed using cyclic Sharacteriz studies carried out in DMF using glassy carbon
as the working electrode, Ag/AgCl and Hg/Hg,Cl, as the reference electrode, Pt as the counter
electrode, and KCl (0.1 M) as the supporting electrode at a scan rate of 50 mV/s. Anodic and cathodic
scan of [Co(IIT)-Pt(IT)] (acac)s in the presence of an increasing volume of Glutathione (10 uM)
shows the reduction of Co(III) centre to Co(Il) in the cathodic scan and oxidation of GSH to GSSG in

the anodic scan.
Scan Rate-Dependent Cyclic Voltammetry and Graph Fitting

Cyclic voltammograms were recorded at different scan rates to evaluate the electron-transfer

characteristics of the complex.

12

Ip vs. v* plot — A linear fit was applied to examine diffusion-controlled behavior as predicted by the

Randles—Sevcik equation.
Ip= (2.69x10%) n*>ACD"?v!?

where 7 is the number of electrons transferred, 4 the electrode area (cm?), C the analyte concentration
(mol cm™), and D the diffusion coefficient (cm?s™). 52 A linear Ip vs. v!? relationship confirms

diffusion control.
Cell lineages

MDA-MB-231 (human breast adenocarcinoma), HT-29 (human colon adenocarcinoma) cells were
maintained in Dulbecco’s Modified Eagle Medium (DMEM). A549 (human lung carcinoma) and
HaCaT (human immortalized keratinocytes) were cultured in DMEM/F12 with 10% FCS. All cell
lines were maintained in the presence of 1x antibiotic-antimycotic solution purchased from Thermo

Fisher Scientific. All the cell lines were maintained at 37 °C with 5% CO,.
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Cytotoxicity Assay

Cell viability was measured in triplicates in 96-well plates with a cell density of 6000-8000 cells per
well using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-lium bromide]. All the cells were
incubated for 24 h in normoxia (5% CO,, 95% atmospheric air at 37 °C) conditions, and to mimic
hypoxia, A459 cell were incubated with 100 uM CoCl, as described previously.5* The cells were
treated with complexes for 24 h in triplicate and after the treatment, the cells were further incubated
with 10 uL MTT solution (5mg/ml in 1X PBS) for 3 h at 37 °C. Formazan crystals were dissolved in
100 pL. DMSO and the absorbance was taken in 570 nm using Cytation 5, BioTek with 690 nm as

reference. The graphs were plotted using GraphPad Prism 7 software.
Scratch Wound Healing assay

MDA-MB 231 cells were seeded in a 6-well plate and incubated in 2 mL of complete DMEM media
at 37 °C and 5% CO, till the monolayer achieved 70% confluency. The complete media was then
replaced by serum-free media. Using a sterile 10 pl pipette tip, a straight scratch was made simulating
a wound in each of the wells. The plate was then washed with 1 ml of 1X PBS buffer to remove debris
and then replaced with 2 ml of serum-free media. The [Co(III)-Pt(IT)](acac)s compounds at ICso
concentrations were added and images were taken at 0, 24 hr following the treatment from at least 3
different fields of each well. The width of the wound was measured and the % of wound healing was

calculated.
Cellular Uptake Study- Inductively coupled plasma mass spectrometry (ICP-MS)

Inductively coupled plasma mass spectrometry (ICP-MS) (for trace elemental analysis) was carried
out to determine the concentration of Cobalt (*’Co) and Platinum ('**Pt) in [Co(III)-Pt(Il)] treated cell
pellet. Briefly 3x10° cells were seeded in 60 mm cell culture dish and incubated overnight at 37°C.
Next day, cells were treated with 10 uM of [Co(IIT)-Pt(IT)](acac)s (5%-DMSO-milliQ stock) and
incubated for predetermined time points (3 h, 6 h, 12 h, and 24 h). After incubation, cells were washed
with 1X PBS, and then trypsinized and collected. The cell number was counted by hemocytometer.
Finally, the cells were digested with 1mL of 70% HNOj3 solution and the total volume was made up to
12 mL by milliQ, followed by ICP-MS analysis using Agilent 7850 ICP-MS instrument.

Real-Time Revere Transcription-Polymerase chain reaction (RT-PCR)

1. RNA isolation: To induce cellular physiological hypoxia, the incubator chamber was
maintained at an oxygen level of 1% to achieve hypoxia. MDA-MB 231 cells were seeded in
a 6-well plate and incubated in 2 ml of complete DMEM media at 37 °C and 5% CO till the
monolayer achieved 70 — 80 % confluency. Later the cells were treated with [Co(IIT)-Pt(II)](acac)s

at ICso concentration for 24 hours. Total RNA was isolated from a single-cell suspension of cultured
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cells using the Trizol method. RNA concentration and purity were measured using a NanoDrop
Spectrophotometer.
For all experiments performed in hypoxia around 50-100 uM of Cobalt chloride was added as
it stabilizes the HIF expression.
2. Reverse-transcription: The cDNA synthesis was
carried out using 1 pg RNA using the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific)
following the manufacturer’s protocol.
3. Real-time polymerase chain reaction (PCR): The real-time polymerase chain reaction
(PCR) was carried out using gene-specific primers for HIF-1a, VEGF, and GLUT1 via SYBR

green method following manufacturer’s protocol. Primer sequences are available on request.
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Figure S1. Normalized UV-Vis spectra of [Co(IIT)(L')(phen-NH;)](acac)s, [Pt(II)(DABA)CI;] and

[Co(IIT)-Pt(IT)] (acac)s complex, ([Co(IIT)-Pt(IN)]) (1.0 mmol.L")
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Figure S2. Q-TOF ESI Mass spectra of [Co(IIT)(L')(phen-NH;)](acac)s recorded in CH;OH using
Waters Micromass Q-Tof Micro spectro-photometer. The peak at m/z 164.1650 corresponds to the
species [M]*" The inset shows the isotropic distribution of the peak at 164.0366 of

[Co(ITT)(L')(phen-NH;)] (acac)s
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Figure S3. FT-IR Spectra of [Co(IIT)(L')(phen-NH>)](acac)s with characteristic peaks at 1650 cm’!
and 3130 cm! representing imine bond and amine bond recorded using Perkin-Elmer UATR TWO
FT-IR Spectrometer
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Figure S4. '"H NMR spectra of [Co(IIT)(L')(phen-NHz)](acac)s recorded in DMSO-ds using Bruker
Avance 400 (400 MHz). The peaks in the aromatic region (& 9.3-7.2 ppm) arise from both the
phenanthroline and Schiff base aromatic environments. The singlets at 6 7.04 and 6.62 ppm
correspond to the amine protons. The peak in the range & 2.96-2.67 ppm arises from methyl protons of
the ancillary ligand, and the singlet at 6 7.94 ppm is attributed to the imine-adjacent aromatic proton
(-CH=N-Ar).
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Figure S5. Q-TOF ESI Mass spectra of [Pt(II)(DABA)Cl,] recorded in CH30OH using Waters
Micromass Q-Tof Micro spectro-photometer. The peak at m/z 380.9736 corresponds to the species
[M-CI-H]" and 416.9470 correspond to [M]" of complex [Pt(II)(DABA)CI,]
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Figure S6. FT-IR Spectra of [Pt(I)(DABA)Cl,] with characteristic peaks at 1710-1720 cm™ and
3439-2929 cm’ representing carbonyl bond, amine bond, and hydroxyl (O-H) bond recorded using
Perkin-Elmer UATR TWO FT-IR Spectrometer
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Figure S7. '"H NMR spectra of [Pt(II)(DABA)Cl;] recorded in DMSO-ds using Bruker Avance 400
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Figure S8. Q-TOF ESI Mass spectra of [Co(III)-Pt(II)](acac)s recorded in CH3OH using Waters
Micromass Q-Tof Micro spectro-photometer. The peak at m/z 297.1471 corresponds to the species

[M]** of complex [Co(IIT)-Pt(Il)](acac);
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Figure S9. FT-IR Spectra of [Co(III)-Pt(II)](acac); with characteristics peaks at 1656 cm™ ,1669 cm
"and 3338 cm™ representing imine bond, carbonyl bond and amine bond recorded using Perkin-Elmer
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Figure S10. 'H NMR spectra of [Co(III)-Pt(II)](acac); recorded in DMSO-ds using Bruker Avance
400 (400 MHz). The signals in the aromatic region between 6 9.2-6.82 ppm correspond to the protons
of the coordinated 1,10-phenanthroline, the Schiff base and the DABA ligand. The most downfield
signal at 6 10.26 ppm (s) is assigned to the NH proton of the amide bond. The singlet at & 5.63 ppm
corresponds to the amino (-NH:) protons of the pendant aromatic amine group. The peaks at 6 2.96-
2.67 are attributed to aliphatic CH> protons of the ancillary ligand. In the 'H NMR spectra of
diamagnetic metal-acetylacetonate complexes, the acac ligand is typically characterised by two well-
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defined resonances: a singlet for the methine proton (—-CH-) at 6 5.3—5.5 ppm and a singlet for the two
equivalent methyl substituents at 6 1.8-2.0 ppm, as observed for Co(acac)s in solution. (Ref. G. M.
Shalhoub, J. Chem. Educ., 1980, 57, 525) In contrast, when acetylacetonate is present as a counter-
ion, the expected signals usually appear in the same spectral region, but they are frequently broadened
or coalesced due to ion pairing and dynamic exchange processes. Such behaviour in the case of
Co(cyclam)(acac),, noting that the acetylacetonate counter-ion resonances were detected but
overlapped and insufficiently resolved for precise chemical-shift assignment (Ref. E. Simon, P.
L’Haridon, R. Pichon and M. L’Her, Inorg. Chim. Acta, 1998, 282, 173-179).
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Figure S11. Stability study of [Co(III)-Pt(IT)](acac); (1 mmol.L") in 2% DMSO/PBS buffer at pH
7.4 by UV-visible spectroscopy.
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Figure S12. Cyclic Voltammogram and Differential Pulse Voltammogram of [Co(IIT)(L')(phen-
NHb>)](acac); using solution (20 mL (1mM)) in 2% DMSO-PBS buffer at 298 K using Glassy Carbon
electrode as working electrode, Ag/AgCl electrode as reference electrode and Pt electrode as counter
electrode and KC1 0.1 M as supporting electrolyte, at scan rate 50 mV/s.
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Figure S13. Cyclic Voltammogram of [Pt(II)(DABA)CI;] using solution (20 mL (ImM)) in 2%
DMSO-PBS buffer at 298 K using Glassy Carbon electrode as working electrode, Ag/AgCl electrode

as reference electrode and Pt electrode as counter electrode and KCI 0.1 M as supporting electrolyte,
at scan rate 50 mV/s.
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Figure S14. Cyclic Voltammogram and Differential Pulse Voltammogram of [Co(I1I)-Pt(II)](acac)s
using solution (20 mL (1mM)) in 2% DMSO-PBS buffer at 298 K using Glassy Carbon electrode as
working electrode, Ag/AgCl electrode as reference electrode and Pt electrode as counter electrode and
KC10.1 M as supporting electrolyte, at scan rate 50 mV/s.
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Figure S15. Stability study of [Co(III)-Pt(II)](acac); in Cyclic Voltammogram for 30 min using
solution (20 mL (1mM)) in 2% DMSO-PBS buffer at 298 K using Glassy Carbon electrode as
working electrode, Hg/Hg,Cl ; electrode as reference electrode and Pt electrode as counter electrode
and KC1 0.1 M as supporting electrolyte, at scan rate 0.5 V/s.
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Figure S16. Study of electrochemical behaviour of [Co(III)-Pt(II)](acac)s in Cyclic Voltammogram
at different scan rate using solution (20 mL (ImM)) in 2% DMSO-PBS buffer at 298 K using Glassy
Carbon electrode as working electrode, Hg/Hg,Cl » electrode as reference electrode and Pt electrode
as counter electrode and KC1 0.1 M as supporting electrolyte.
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Figure S17. A linear relationship between the cathodic peak current (I,) and the square root of the

scan rate (v'/?) indicates diffusion-controlled electron transfer. Fitting was performed using linear
regression.
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Figure S18. Photoluminescence plot and Scatchard plot of [Co(ILI)-Pt(IT)](acac)s for BSA binding.

S18



Figure S19. Molecular Docking interaction map of [Co(III)-Pt(II)](acac); with BSA
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Figure S20. Q-TOF ESI Mass spectra recorded for the methanolic solution of [Co(III)-Pt(II)] and
GSH (10 mM) using Waters Micromass Q-Tof Micro spectro-photometer. The peak at m/z 612.1514
corresponds to [Pt(II)+NH4]" moiety released after reduction of Co(III) to Co(II).
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Figure S21. Q-TOF ESI Mass spectra of complex-GSH adduct recorded for the methanolic solution
of [Co(II)-Pt(I)] and GSH (10 mM) using Waters Micromass Q-Tof Micro spectro-photometer. The
peak at 845.1719 m/z corresponds to [PtGSH-CI-H], confirming the coordination of GSH in the Pt
centre.
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Figure S22. Q-TOF ESI Mass spectra of complex-GMP adduct recorded for the methanolic solution
of [Co(II)-Pt(I)], GSH (10 mM), and GMP using Waters Micromass Q-Tof Micro spectro-
photometer. The peak at m/z 906.4011 corresponds to [PtGMP-OH]" adduct, confirming the
coordination of GMP to the platinum centre after reduction-induced Pt release.
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Figure S23. Q-TOF ESI Mass spectra of complex-GMP adduct recorded for the methanolic solution
of [Co(II)-Pt(I)] and GMP using Waters Micromass Q-Tof Micro spectro-photometer. The peak at
m/z 280.3149 corresponds to the tetracationic species [M—PO4sH,]*, consistent with coordination of

GMP to the platinum center.
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Figure S24. Non-linear regression plot for cellular viability data in A549 cells for

[Pt(IT)(DABA)C]l,] and [Co(IIT)(L")(phen-NHz)](acac); using GraphPad Prism 5 for a period of

24h, 48 h and 72 h. Both complexes exhibit significant reductions in cell viability with

increasing concentrations. Data are expressed as mean + standard deviation.
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Figure S25. Non-linear regression plot for cellular viability data in A549 (hypoxia), MCF-7,
HaCaT, HT-29, and MDA-MB-231 cells using GraphPad Prism 5. Data are expressed as

mean =+ standard deviation.
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Figure S26. Q-TOF ESI Mass spectra recorded for the methanolic solution after the treatment of the
[Co(ITID)—Pt(II)] complex with GSH using Waters Micromass Q-Tof Micro spectro-photometer. The
peak at m/z 351.1207 is assigned to [Co(II)L!(H20).], indicating reduction of Co(III) and release of
the Pt(II) moiety
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Figure S27. UV-Vis spectra of Co(III)L!(phen-NH>) (80uM) (recorded upon addition of GSH (50—
400 uM). There is a decrease in the LMCT band in the 350-400 nm region, indicating a possible
reduction of Co(IIl) to Co(Il). The increase in the 280-290 nm region is attributed to ligand-centered
n-* transition of phenanthroline, suggesting partial ligand dissociation.
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s [PA(I1)(DABACI,] + 120 uM GSH
—— [Pt{II){DABA)CI,] + 135 uM GSH
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Figure S28. UV—Vis spectral changes of [Pt(I[)(DABA)CI:] (20 uM) upon step-wise addition of GSH
(15-150 uM). The progressive decrease in the 650—-750 nm band indicates the reduction/substitution

of the original Pt complex by GSH.
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Figure S29. 'H NMR and *C NMR of L, recorded in CDCls using Bruker Avance 400 MHz

spectrometer. The Peaks are reported to be as per the value.
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Figure S30. Non-linear regression plot for cellular viability data of Cis-Platin, L! and L? in

the A549 cell line.
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Figure S31. Time-dependent (0 to 6 hours) UV-Vis spectra of GSH (1 mM) recorded under
the same experimental conditions used for the reaction with the Co-Pt complex. No changes
are observed in the spectral profile over time, indicating that GSH does not undergo

detectable aerial oxidation during the experimental timeframe.

100 < 611.1425 ,

Figure S32. The isotopic distribution spectrum showing a minor peak at m/z 612.1514
corresponding to [Pt(II)*NH4]", and a much more intense peak at m/z 611.1425 that may
correspond to the isotopic pattern of the peak [Pt(I[)+NH4]".
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Figure S33. Cyclic Voltammogram of GSH using Ag/AgCl electrode as reference electrode A)
Negative Reduction half scan; B) Positive Oxidation half scan. In the negative potential window, the
GSH-only CV shows no discrete reduction peaks, as expected for GSH, which lacks reducible centers
in this range. The anodic wave observed at positive potentials (+0.8 to +1.3 V vs Ag/AgCl)
corresponds to GSH oxidation.
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Figure S34. Cathodic and Full scan of cyclic voltammogram of Co(IIl)-Pt(Il) complex
(150uM) with increasing concentration of GSH (0- 500 puM). It reveals a pronounced
enhancement in cathodic current, indicating facilitated reduction of the complex. The fact that
E1.2 shifts only marginally with increasing GSH concentration indicates that GSH does not
significantly alter the thermodynamic redox potential of the metal center.
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Figure S35. Simulated mass spectra showing isotropic distribution of the ion (a) [M+NHa4]",

M=[Pt(II)(C19H15NsO)Cl,] at 612 (b) [M-CI]", M= [Pt(I)(C19H1sNsO)(GSH)CI] at 845 using
mMass free software.
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