Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Fluorescent Coordination-Polymer Single Crystals with Tunable Elastic-Plastic Transformations

Jia-Hui Zhang^a, Yu-Xia Li^a, Kai-Ge Gao^b, Xin-Li Shi^a, Jie-Sheng Hu^a, Hui Ai^c, Zi-Shuo Yao^a* and Jun Tao^a

^a Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China

^b College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.

^c Analysis & Testing Center, Office of Nationalassets & Laboratory Management, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China

E-mail: taojun@bit.edu.cn; zishuoyao@bit.edu.cn

Experimental section

Crystal Synthesis:

[Cd₂Cl₄(Im)₂]_n (1): CdCl₂ (1.5 mmol), Imidazole (3mmol) and 10 mL Distilled water were added in a 20 mL Teflon-sealed autoclave. The mixture was stirred for approximately 24 hours and then filtered to obtain a clear solution. Needle-like crystals of compound 1 after the system was gradually cooled to room temperature, formed the high-quality needle-shaped single crystals. The yield was ca.61.26%. Anal. C₃H₄CdCl₂N₂ (251.37); calcd C 14.33%, H 1.60%, N 11.41%; found C 14.47%, H1.76%, N 11.00%.

[Cd₂Cl₄(MeIm)₂]_n (**2**): CdCl₂ (1.5 mmol), 1-methylimidazole (3mmol) and 10 mL Distilled water were added in a 20 mL Teflon-sealed autoclave. The mixture was stirred for approximately 24 hours and then filtered to obtain a clear solution. Needle-like crystals of compound **2** after the system was gradually cooled to room temperature, formed the high-quality needle-shaped single crystals. The yield was ca.56.46%. Anal. C₄H₆CdCl₂N₂ (265.40); calcd C 18.10%, H 2.28%, N 10.55%; found C 18.09%, H 2.03%, N 10.50%.

 $[Cd_2Cl_4(EtIm)_2]_n$ (3): $CdCl_2$ (1.5 mmol), 1-ethylimidazole (3mmol) and 10 mL Distilled water were added in a 20 mL Teflon-sealed autoclave. The mixture was stirred for approximately 24 hours and then filtered to obtain a clear solution. Needle-like crystals of compound 3 after the system was gradually cooled to room temperature, formed the high-quality needle-shaped single crystals. The yield was ca.47.73%. Anal.

C₅H₈CdCl₂N₂ (279.43); calcd C 21.49%, H 2.88%, N 10.02%; found C 21.21%, H 2.68%, N 9.88%.

Single-crystal X-ray diffraction (SC-XRD): The single-crystal X-ray diffraction data were collected using a Rigaku Oxford XtaLAB PRO diffractometer equipped with a Mo-Kα radiation source. The diffraction data were collected at 298 K. The structures at different phases were solved using direct methods and refined by full matrix least-squares techniques on F2 with the SHELX program implemented in the Olex2 program.

Photoluminescence (PL) spectra: The data were obtained with an FLS1000 fluorescence spectrophotometer (Edinburgh Instruments) featuring a continuous xenon lamp and visible/NIR photomultiplier tube (PMT) detectors (Hamamatsu P9289P and R5509).

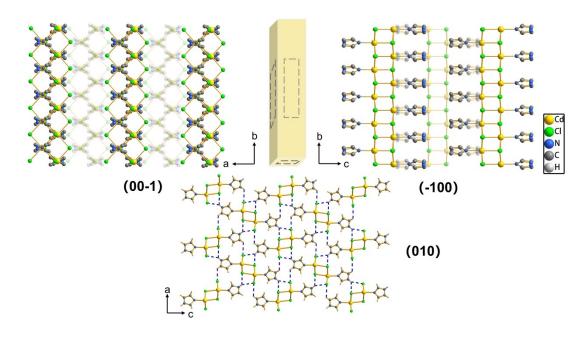


Figure S1. Stacking structure of compound 1.

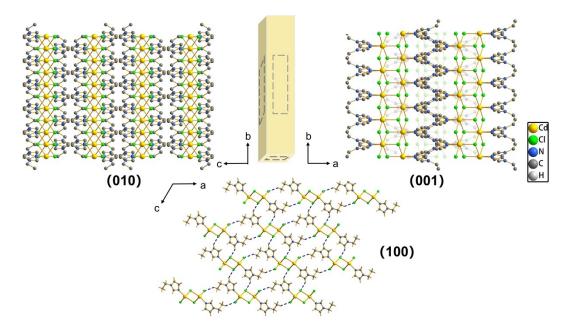


Figure S2. Stacking structure of compound 3.

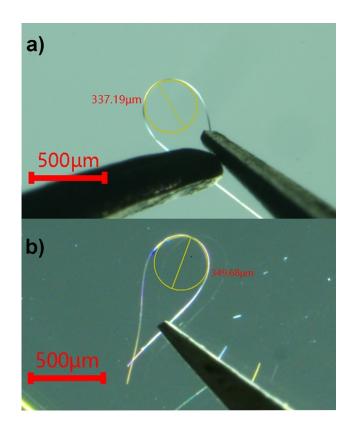


Figure S3. Measurement of the maximum bending strain. a) crystal 1. b) crystal 2.

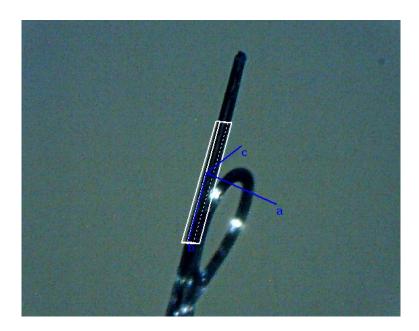
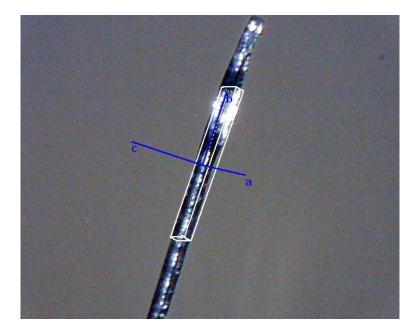
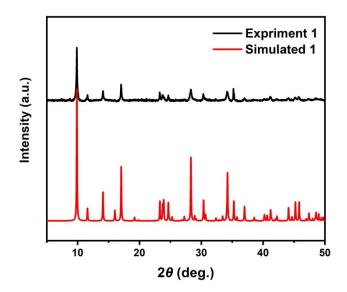
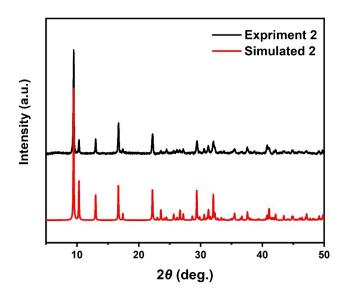


Figure S4. Crystal morphology with the face indices of compound 1.

Figure S5. Crystal morphology with the face indices of compound 2.

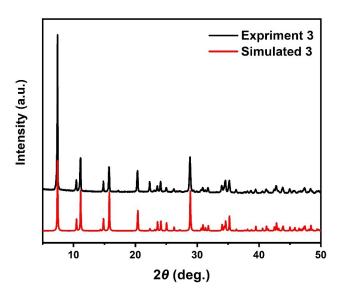

Figure S6. Crystal morphology with the face indices of compound 3.

Figure S7. Experimental and simulated PXRD patterns of compound 1 at room temperature.

Figure S8. Experimental and simulated PXRD patterns of compound **2** at room temperature.

Figure S9. Experimental and simulated PXRD patterns of compound **3** at room temperature.

Table S1. Types and distances of weak intermolecular interactions between 1D chains.

Style	1	2	3
d _{C-H···Cl} (Å)	2.887 2.994 3.044	2.897 3.047 3.082 3.163	2.919 2.989 3.111
d _{N-H···Cl} (Å)	2.5502 2.8867		

Table S2. Cd···Cd distance along the direction of the one-dimensional chain.

Samples	Distance (Cd···Cd)/ Å
1	3.8319
2	3.8859
3	3.9649

Table S3. Changes in the framework angle.

Samples	∠Cl ₁ CdCl ₁ /°	∠Cl ₂ CdCl ₂ /°	∠CdCl₁Cd/°	∠CdCl₂Cd/°
1	87.36		95.08	89.68
2	86.17	86.73	96.60	90.30
3	85.47		97.72	91.16

 Table S4. Crystal data and structure refinement for compound 1-3.

Identification code	1	2	3
Empirical formula	C ₃ H ₄ CdCl ₂ N ₂	C ₄ H ₆ CdCl ₂ N ₂	C ₅ H ₈ CdCl ₂ N ₂
Formula weight	251.37	265.40	279.43
Temperature/K	293(2)	293(2)	293(2)
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	Pnma	$P2_{1}/c$	<i>I</i> 2/ <i>m</i>
a/Å	11.0566(10)	3.8859(4)	13.164(3)
b/Å	3.8319(3)	17.1403(15)	3.9649(6)
c/Å	15.2570(10)	11.2169(9)	16.918(3)
α/°	90	90	90
β/°	90	95.796(8)	110.14(2)
γ/°	90	90	90
Volume/Å ³	646.41(9)	743.29(12)	829.0(3)
Z	1.333333	4	4
$\rho_{calc.}g/cm^3$	2.583	2.372	2.239
μ /mm ⁻¹	4.092	3.565	3.203
F(000)	472.0	504.0	536.0
Radiation	Mo Kα ($\lambda = 0.71073$)	Mo Kα ($\lambda = 0.71073$)	Mo Kα ($\lambda = 0.71073$)
2Θ range /°	7.84 to 58.218	7.68 to 59.394	7.254 to 58.38
Index ranges	-	$-5 \le h \le 5, -23 \le k \le 23, -15 \le 1 \le 15$	-
Reflections collected	3651	7873	3382
Independent reflections	$870 [R_{int} = 0.0335, R_{sigma} = 0.0291]$	$870 [R_{int} = 0.0335, R_{sigma} = 0.0291]$	$1090 [R_{int} = 0.1408, R_{sigma} = 0.1230]$
Data/restraints/parameters	870/9/64	1860/0/83	1090/42/83
Goodness-of-fit on F ²	1.255	0.990	0.952
Final R indexes [I>=2σ (I)]	$R_1 = 0.0285,$ $wR_2 = 0.0704$	$R_1 = 0.0323,$ $wR_2 = 0.0645$	$R_1 = 0.0532,$ $wR_2 = 0.1064$
Final R indexes [all data]	$R_1 = 0.0340, wR_2 = 0.0720$	$R_1 = 0.0500, wR_2 = 0.0732$	$R_1 = 0.0671, wR_2 = 0.1122$

Largest diff. peak/hole / e Å-3	0.72/-0.61	1.13/-1.16	1.12/-1.31
CCDC	2486224	2486226	2486225

Table S5. Summary and comparison of reported work on 1D CPs.

Compounds	Distance (Cd···Cd)/ Å	£ (%)
$\frac{[CdCl_2(3-Clpy)_2]_n}{[CdCl_2(3-Clpy)_2]_n}$	3.812	0.71
$[CdCl_2(3-Brpy)_2]_n$	3.854	0.47
$[\mathrm{CdBr}_2(3\mathrm{-Brpy})_2]_n^{-1}$	No found	0.59
$[CdCl_2(I-pz)_2]_n$	3.9399	0.573
$[CdBr_2(I-pz)_2]_n$	4.0317	0.505
$[\mathrm{CdI}_2(\mathrm{I-pz})_2]_n$	4.2080	0.473
$[CdCl_2(Br-pz)_2]_n$	3.846	0.757
$[CdBr_2(Br-pz)_2]_n$	3.9125	1.162
$[CdCl_2(Cl-pz)_2]_n$	3.7369	1.134
$[\mathrm{CdBr}_2(\mathrm{Cl-pz})_2]_n^2$	3.8547	1.244
$[CdI_2(3-CNpy)_2]_n$	No found	1.09
$[CdCl_2(3-CNpy)_2]_n$	3.795	1.09
[CdCl2(4-CNpy)2]n3	3.781	1.07
$[Pb(SCN)_2(3F-spy)_2]_n^4$	4.175	1.3
$[Pb(SCN)_2(2F-spy)_2]_n^5$	No found	0.8
$[CdCl_2(3-Ipy)_2]_n$	3.95	0.28
$[CdI_2(3-Ipy)_2]_n^6$	No found	0.4
$[CdCl_2(1-Methyl-2-pyridone)]_n$ ⁷	3.840	2.24
$[Pb_2Br_4(DMA)_2]_n$	4.379	1.36
$[Pb_2Br_4(DMF)_2]_n^{8}$	4.343	0.34
Crystal of this work 1	3.8319	4.98
Crystal of this work 2	3.8859	4.45

py = pyridine; pz = pyrazine; spy = 3-fluoro-4'-styrylpyridine; DMF = N, N-dimethylformamide; DMA = N, N-dimethylacetamide

Reference

- 1 M. Pisačić, I. Kodrin, I. Biljan and M. Đaković, *CrystEngComm*, 2021, **23**, 7072–7080.
- 2 M. Đaković, M. Borovina, M. Pisačić, C. B. Aakeröy, Ž. Soldin, B. M. Kukovec and I. Kodrin, *Angew. Chem. Int. Ed.*, 2018, **57**, 14801–14805.
- 3 M. Pisačić, I. Kodrin, A. Trninić and M. Đaković, *Chem. Mater.*, 2022, **34**, 2439–2448.
- 4 B. B. Rath and J. J. Vittal, Chem. Mater., 2021, 33, 4621–4627.
- 5 B. B. Rath, M. Gupta and J. J. Vittal, *Chem. Mater.*, 2021, **34**, 178–185.
- 6 M. Pisačić, I. Biljan, I. Kodrin, N. Popov, Ž. Soldin and M. Đaković, *Chem. Mater.*, 2021, 33, 3660–3668.
- 7 Y. Zhang, Y.-X. Li, K.-G. Gao, J.-H. Zhang, J.-S. Hu, J. Tao and Z.-S. Yao, *Dalton Trans.*, 2024, **53**, 8905–8909.
- 8 T. Ji, F. Yan, Y. Zhang, Q. Lu and K. Gao, J. Phys. Chem. Lett., 2025, 16, 4236 4242.