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Comparison of O-OH Distances in 5-, 6-, and 7-Membered Rings
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Figure S1. Comparison of Keto-Phenoxy O—OH Distances in 5-, 6-, and 7-Membered Rings

NMR Spectra of complex 2a-c
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Figure S2. "H NMR spectrum (600 MHz, C¢Ds, 30 °C) of complex 2a.
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Figure S3. "® C NMR spectrum (150 MHz, C¢Ds, 30 °C) of complex 2a.
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Figure S4. HSQC NMR spectrum (600 MHz, CsDs, 30 °C) of complex 2a.
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Figure S5. COSY NMR spectrum (600 MHz, CsDg, 30 °C) of complex 2a
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Figure S6. 'H NMR spectrum (600 MHz, CsDs, 30 °C) of complex 2b.
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Figure S7. ®C NMR spectrum (150 MHz, C¢Ds, 30 °C) of complex 2b.
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Figure $8. HSQC NMR spectrum (600 MHz, CgDs, 30 °C) of complex 2b.
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Figure S9. COSY NMR spectrum (600 MHz, CsDs, 30 °C) of complex 2b.
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Figure $10. "H NMR spectrum (600 MHz, C¢Ds, 30 °C) of complex 2c.
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Figure S11. 3C NMR spectrum (150 MHz, CsDs, 30 °C) of complex 2c.
[ \
|
% 10
20
— R ]
% ¥oe Ed éj@-ﬁzyb . 30
I L40
' 50
L60
] ° *
—] 70 _
£
[=%
lso &
L0
100
I
i 110
] 120
— § 130
— + 140
T 1150
! !
90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05
2 (ppm)

Figure $12. HSQC NMR spectrum (600 MHz, CsDg, 30 °C) of complex 2c.
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Figure S13. COSY NMR spectrum (600 MHz, C¢Ds, 30 °C) of complex 2c.

Determination of PrLA tacticity

PrLA tacticity was determined from its '"H NMR spectrum (Figure S7-S10). The spectra were deconvoluted using MestReNova. The P,
values was calculated from each of tetrad integrals using Bernoulli statistics equations as shown below:’

P?
[rmr] = >
PP
[rmm] =
2
P.P,
[mmr] =
2
B.P,
[mmm] = P2 + rzm
rm] = P*+ PP,
2
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mmm

Tetrad Integration P A
rmr 0.043 0.71
rmm 0.105 0.69
mmr 0.084 0.70
mmm 0.576 0.58
mrm 0.192 0.54
Average 0.64
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f1 (ppm)

Figure S$14. Homonuclear 'H-decoupled NMR (600Hz, CDCls, 30 °C) at methine region of

poly(rac-LA) catalyzed by 2a (Table 2., Entry 1).
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Figure S$15. Homonuclear 'H-decoupled NMR (600Hz, CDCl3, 30 °C) at methine region of

poly(rac-LA) catalyzed by 2b (Table 2., Entry 2).

S10



mmm

Tetrad Integration P
rmr 0.027 0.77
rmm 0.076 0.76
mmr 0.104 0.75
mmm 0.664 0.68
mrm 0.128 0.78
Average 0.75

5.240 5.230 5220 5.210 5.200 5.190 5.180 5.170 5.160 5.150 5.140 5.130 5.1
f1 (ppm)

Figure $16. Homonuclear 'H-decoupled NMR (600Hz, CDCls, 30 °C) at methine region of
poly(rac-LA) catalyzed by 2c (Table 2., Entry 3).
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Figure S$17. Homonuclear 'H-decoupled NMR (600Hz, CDCls, 30 °C) at methine region of
poly(rac-LA) catalyzed by 2c (Table 2., Entry 4).
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End-group analysis
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Figure S18. MALDI-TOF spectrum of PLA obtained from polymerization using 10:1 [rac-LA]:[2c],
[rac-LA] = 0.50 M in DCM at room temperature for 1 min.

Kinetic analysis

The polymerizations of rac-LA, L-LA, D-LA or &-CL was carried out in a glovebox with concentrations of
monomer = 0.500 M in DCM and 200:1 of monomer to catalyst mole ratio. All experiments were carried out at
room temperature and repeated three times. The aliquots of crude product were monitored by 'H NMR
spectroscopy to calculate a conversion. Then, the slope of three experiments were determined from the plot of
In([M]o/[M]t) vs reaction time. A plot of In([M]o/[M]t) increased linearly with reaction time, indicating that the
polymerization rate was first-order dependence on the monomer concentration. The polymerization rate: rac-LA =
D-LA > L-LA >> ¢-CL.
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Figure S$19. Polymerization of L-LA, D-LA, rac-LA, or &-CL using [M]: [2¢] = 200: 1and [M], = 0.500 M in DCM, RT at different times. Plot of

conversion with reaction time and (top) plot of In([M]¢/[M];) vs reaction time (down).

Table S1 Ring-opening copolymerization (ROCOP) of L-LA and GA using complex 2c¢.?

Monomer Time A Conv B Conv Mn.cpc
. . . . ’ BC
Entry A B [A] [B] [2c] (min) (%)b (%)b (kDa)°
1 L-LA Ga 180: 20: 1 5 90 >99 97.8 1.27
2 L-LA Ga 160: 40: 1 5 82 >99 81.2 1.38
3 L-LA Ga 140: 60: 1 5 94 >99 d d

@ Reaction conditions: [LA]o= 0.5 M, DCM, RT.® Conversion determined by 'H NMR spectrum of crude polymer sample. ¢ Determined by GPC

analysis using a refractive index (RI) detector and polystyrene as a standard in THF. ¢ Can’t determine due to the solubility.
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Calculation of the average monomer block lengths

The average lengths of lactyl blocks (L.a) and glycolyl blocks (Lea) can be calculated from the following

equations:25

LL + LG
L“‘:( LG )XZ

LL = [LLLL]
LG = [LLGG]
GG + GL
ea= (g ) %2
GG = [GGGG]
GL = [GGLL]

Note: Each LA monomer polymerizes into two Lia units and each GA monomer polymerizes into two Lea units.

The average lengths of lactyl blocks (L.a) and caproyl blocks (LcL) can be calculated from the following

equation:8.7

%(LLL + LLC + CLL + CLC)

Ly =

CLC + %(LLC +CLL)

1 1
LLL = -[CLLLL] + E[LLLLC] + g[CLLLC] + [LLLLLL]

N =

1 1 1
LLC = [CLLC] + 5[LLLLC] + 3 [CLLLC]
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1 1 1
CLL = 5 [CLLC] + 5[CLLLL] + 5[CLLLC]

CLC = [CLC]

LCL+ CCL+LCC+CCC
cL =

LCL + %(CCL +LCC)

LCL = [LLCLL] + [LLCLC] + [CLCLL] + [CLCLC]
CCL = [CCLC] + [CCLL]
LCC = [CLCC] + [LLCC]
ccc = [ccc]

Where [Seq.] are the contents of each sequence in the copolymer chain calculated from the integration of

signals in the 3C NMR spectrum of carbonyl region.

Note: Each LA monomer polymerizes into two Lia units

Calculation of the reactivity ratio of monomer (rmonomer)

The reactivity ration of each monomer in copolymerization can be calculated from the following
equation:8.?

As the reactivity ratios follows Mayo-Lewis equation: = Z‘;A g = ’;LB ¢Y)
AB BA

where k;; is the rate constant for adding monomer j to polymer ending with monomer i
The probability that polymer-ended monomer A adds monomer A is

P, = kaa[My]
AR [Mg]

Then substitute eq. (1),

S15



Tafa

- Tafa+ [ @)

PAA

_ [Ma] —1_ = i
Where f, = TRETS and fz =1 — f,, f =the comonomer ratio

The average block length of monomer A follows the Bernoullian statistics:

1
_1_PAA

Ly

So,

1
Py=1-— 3
14 L ©)

Substitute P,, into the probability expression eq. (2) and (3)

1 T
1- - = afa

Ly B Tafa+ [

Rearrange to isolate r,

_ (Laxfg) = fB
rA_T
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NMR spectra of copolymer

ARSZ58888 A
sl i i —
=y N2=— v
, £ o
0 o b0
Bu” OJ\a/ bO)kr H
o) (o} .
m
Cc
b
a
| | |
g8 g 3
o5 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 O
f1 (ppm)
Figure $20. 'H NMR spectrum (600 MHz, DMSO-ds, 30 °C) of poly(L-LA-co-Ga) (Table 3, entry 1).
: g
vg g g & g
NS T I
CH,
CH
c=0 ,
~
CII-I2
| L
0 18 170 160 150 140 130 120 110 100 9 8 70 60 50 40 30 20 10
f1 (ppm)

Figure $21. "*C NMR spectrum (150 MHz, DMSO-ds, 30 °C) of poly(L-LA-co-Ga) (Table 3, entry 1).
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Figure $22. "*C NMR spectrum (150 MHz, DMSO-ds, 30 °C) of poly(L-LA-co-Ga) in carbonyl region (Table 3, entry 1).
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Figure $23. DOSY NMR spectrum (600 MHz, DMSO-ds, 30 °C) of poly(L-LA-co-Ga) (Table 3, entry 1).
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Figure $24. 'H NMR spectrum (600 MHz, DMSO-ds, 30 °C) of poly(D-LA-co-Ga) (Table 3, entry 2).
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Figure $25. *C NMR spectrum (150 MHz, DMSO-ds, 30 °C) of poly(D-LA-co-Ga) (Table 3, entry 2).
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Figure $26. *C NMR spectrum (150 MHz, DMSO-ds, 30 °C) of poly(D-LA-co-Ga) in carbonyl region (Table 3, entry 2).
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Figure S27. DOSY NMR spectrum (600 MHz, DMSO-ds, 30 °C) of poly(D-LA-co-Ga) (Table 3, entry 2).
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Figure $28. '"H NMR spectrum (600 MHz, CDCls, 30 °C) of poly(L-LA -co-E-CL) (Table 3, entry 3).
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Figure $29. *C NMR spectrum (150 MHz, CDCls, 30 °C) of poly (L-LA -co-&-CL) (Table 3, entry 3).

110

170 160

180

S21



w0 WS - AN ="OWO VI =
nes & & MAMANA= KO0 hA
mmm ~No~N ooQoooQoo OO
NSNS NS NN ANNANNN OOOOY
5E0N nh SEOERGR 8888
NV \ S\ NN

LLLL

CccC LLCLL
[ LLCC CCLL CLLLL

174.5 174.0 1735 173.0 172.5 172.0 1715 171.0 170.5 170.0 169.5 169.0 168.5
f1 (ppm)

Figure S$30. '3C NMR spectrum (150 MHz, CDCls, 30 °C) of poly(L-LA -co-£-CL) in carbonyl region (Table 3, entry 3).
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Figure S31. DOSY NMR spectrum (600 MHz, CDCls, 30 °C) of poly(L-LA -co-E-CL) (Table 3, entry 3).
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Figure S34. '3C NMR spectrum (150 MHz, CDCls, 30 °C) of poly(D-LA -co-£-CL) in carbonyl region (Table 3, entry 4).
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Figure $35. DOSY NMR spectrum (600 MHz, CDCls, 30 °C) of poly(D-LA -co-E-CL) (Table 3, entry 4).
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GPC profile of polymers
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Figure S36. GPC traces of poly (L-LA) (Table 1, entry 1).
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Figure S37. GPC traces of poly (L-LA) (Table 1, entry 2).
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Figure S38. GPC traces of poly (L-LA) (Table 1, entry 3).
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Figure S41. GPC traces of poly (rac-LA) (Table 2, entry 1).
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Figure S42. GPC traces of poly (rac-LA) (Table 2, entry 2).
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Figure S43. GPC traces of poly (rac-LA) (Table 2, entry 3).
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Figure S44. GPC traces of poly (rac-LA) (Table 2, entry 4).
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Figure S45. GPC traces of poly (L-LA -co- GA) (Table 3, entry 1).
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Figure S46. GPC traces of poly (D-LA -co- GA) (Table 3, entry 2).
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Figure S47. GPC traces of poly (L-LA -co- CL) (Table 3, entry 3).
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Figure S48. GPC traces of poly (D-LA -co- CL) (Table 3, entry 4).
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Figure S49. GPC traces of poly(L-LA) obtained from the polymerization of 500 equiv. of L-LA catalyzed by 2c (Table 1, entry 5).
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Sequential addition polymerization
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Figure S50. GPC traces of poly(L-LA) obtained by sequential addition of 100 equiv. of L-LA for 3 min (black color), waited for 15
min, and followed by an additional of 50 equiv. of L-LA for additional 7 min (red color).
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Single-Crystal X-ray Crystallography

Table S2. Crystal data and structure refinement for complex 2a, 2b, and 2c

Crystal size (mm)

Crystal system

Density (cald.) (mg/m?)
M (mm™)
Theta range for data collection (°)
F (000)

Reflection collected
Unique reflections
Goodness-of-fit-on F2
R1(F), wR(F?)

Largest diff. peak and hole [e A

0.35x 0.13 x 0.05
Orthorhombic
10.019 (3)
17.802 (6)
24.811 (7)
4425.3 (2)
4
1.097
4.51
4.3-70.2
1544
33547
7932
1.05
0.070, 0.176

2.05and -1.36

0.18 x 0.17 x 0.10
Monoclinic
19.445 (8)
11.725 (5)
21.287 (9)
4394.7 (3)

4
1.250
4.60
50-724
1760
102062
8332
1.07
0.019, 0.051

0.59 and -0.44

Complex 2a 2b 2c
CCDC 2489168 2489169 2489170
Chemical formula CaoHseInN2O5 C41He1INN2O3-C3H7-CsH3 Ca4HesINN2O5
Formula weight 730.71 826.87 784.80
Temperature (K) 100 100 100
Wavelength (A) 1.54178 1.54178 0.71073
Space group P22:24 P24/c Cc

0.16 x 0.14 x 0.05
Monoclinic
10.293 (7)
33.327 (2)
12.318 (9)
4068.8 (5)

4
1.281
0.62
2.8-30.5
1664
56659
11529
1.07
0.024, 0.053

1.14 and -0.50
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Table S3. Selected bond distances and angles for complex 2a

Bond angles (deg)

Bond distances (A)
In1—02 2.089 (7)
In1—O01 2.060 (8)
In1—N1 2.207 (8)
In1—03 2.026 (7)
In1—N2 2.207 (1)
01—C1 1.304 (1)
02—C35 1.304 (1)
03—C37 1.361 (2)
N1—C3 1.257 (1)
N1—C18 1.480 (2)
N2—C20 1.287 (2)
N2—C19 1.504 (2)
N1—O1 2.905 (1)
N2—02 2.903 (1)

02—In1—N1

02—In1—N2

01—In1—02

O1—In1—N1

01—In1—N2

03—In1—02

03—In1—01

03—In1—N1

03—In1—N2

N2—In1—N1

141.5 (4)
85.0 (3)
91.0 3)
85.7 (3)
142.6 (4)
104.4 (4)
115.7 (4)
111.5 (4)
101.2 (4)

75.2 (3)
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Table S4. Selected bond distances and angles for complex 2b

Bond distances (A) Bond angles (deg)

In01—01 2.107 (9) O1—In01—NT1 85.1 (4)
In01—02 2.092 (9) 01—In01—N2 162.7 (4)
In01—03 2.025 (9) 02—In01—01 89.3 (4)
IN01—N1 2.194 (1) 02—In01—N1 125.4 (4)
In01—N2 2.259 (1) 02—In01—N2 85.3 (4)
01—C1 1.319 (2) 03—In01—O01 100.2 (4)
02—C23 1.323 (2) 03—In01—02 120.9 (4)
03—C38 1.425 (2) 03—In01—NT1 113.5 (4)
N1—C3 1.302 (2) 03—In01—N2 96.6 (4)
N1—C18 1.480 (2) N1—In01—N2 84.7 (4)
N2—C20 1.478 (2)

N2—C21 1.293 (2)

N1—O1 2.909 (1)

N2—02 2.950 (1)
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Table S5. Selected bond distances and angles for complex 2¢

Bond distances (A)

Bond angles (deg)

In01—02

In01—O1

In01—03

IN01—N2

In01—N1

01—C1

02—C26

03—C41

N1—C3

N1—C18

N2—C23

N2—C24

N1—0O1

N2—02

2.057 (2)
2.083 (2)
2.001 (2)
2.232 (2)
2.219 (2)
1.320 (3)
1.324 (3)
1.399 (3)
1.294 (3)
1.474 (3)
1.472 (3)
1.282 (3)
2.898 (1)

2.951 (1)

02—In01—01

02—In01—N2

02—In01—NT1

01—In01—N2

01—In01—N1

03—In01—02

03—In01—O01

03—In01—N2

03—In01—N1

N1—In01—N2

95.9 (7)
86.8 (8)
127.0 (8)
152.9 (8)
84.6 (7)
116.7 (9)
109.2 (8)
93.3 (8)
112.8 (9)

72.5 (8)
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