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Precursor Synthesis

Precursor synthesis and purification were performed under argon using standard Schlenk
techniques. THF, diethyl ether, and n-hexane were purified and dried with an MBraun solvent
purification system (MBraun SPS). All the compounds, including ZnCl; (abcr, 98%, anhydrous)
and diethyl zinc used for synthesis (Sigma Aldrich, DEZ, Zn(Et), (>52 wt% Zn) were stored,
handled, and prepared for analysis under an argon atmosphere (Air Liquide, 99.999%) in a
glove box (MBraun, Labmaster 120). For precursor analysis, 'H nuclear magnetic resonance
(NMR) spectra were recorded on a Bruker DPS 300 spectrometer. All spectra were referenced
to internal solvent proton signals. The recorded NMR spectra were analyzed using
MestReNova software.

Bis-(N,N-dimethylamino)propyl zinc(ll), Zn(DMP)2:

Zn(DMP), was prepared as previously described by Mai et al." A solution of ZnCl, (1 equivalent)
in THF was cooled to 0 °C and added dropwise to a cooled (0 °C) solution of 3-
(N,N-dimethylamino)propyl magnesium chloride (2 equivalents) in THF that was synthesized
as described in the literature (Scheme S1).2 The resulting suspension was allowed to warm,
refluxed overnight at 80 °C, and then stirred at room temperature. The THF was removed under
reduced pressure, and the colorless solid was extracted in hexane. The suspension was
filtered through a Celite-padded filter, and the volatiles were removed under reduced pressure.
The colorless solid was purified by sublimation at 60 °C to obtain spectroscopically pure
Zn(DMP); (yield: 51%).

'H NMR (400 MHz, Benzene-d6) & [ppm] = 2.06—1.99 (4H, m, [(CH3).NCH>CH>CH,Zn]), 1.98—
1.90 (m, 4H, [(CHs)2NCH,CH.CH,Zn]), 1.88 (s, 12H, [(CHs):NCH,CH-CH,Zn]), 0.32 (4H, t,
[(CHs3)2NCH2CH>CH>Zn]).
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Scheme S1: Synthesis of Zn(DMP)z.
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Bis(N-(2'-ethoxyethyl)-2-penten-2-on-4-iminate) zinc(ll), Zn(EEKI).:

The protonated free ligand H(EEKI) was prepared according to the literature-known procedure,
and the synthesis of Zn(EEKI), followed the published protocol.® To a stirred solution of
diethylzinc in hexane, two equivalents of N-(2'-ethoxyethyl)-2-penten-2-ol-4-imine [H(EEKI)]
were added via a syringe at —-20 °C (Scheme S2). The solution was warmed to room
temperature and stirring continued overnight. The solution was concentrated, and the product
was crystallized at —30 °C. Pale yellow needle-like crystals were isolated by decanting the
remaining solvent. The crystals were then washed with cold hexane and dried under vacuum
(Yield: 93.4%).

"H NMR (400 MHz, Benzene-d6) & [ppm] = 4.85 (1H, s, [-N(C)(CH3)(CH)(C)(CH3)O-]), 3.64—
3.21 (6H, m, [-N(CHz) (CH2)O(CHz)(CHa]), 2.00 (3H, s, [-N(C)(CH3)(CH)(C)(CHs)O-]), 1.54 (3H,
s, [-N(C)(CHs)(CH)(C)(CHz)O-]), 1.06 (3H, t, [-O(CH2)(CHa]).
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Scheme S2: Synthesis of Zn(EEKI)2.

Ethyl(di(trimethylsilylamido))zinc, ZnEt(HMDS):

The synthesis of ZnEt(HDMS) was adapted from the work of Malik et al.* Diethyl zinc was
dissolved in diethyl ether. After cooling the solution to -10 °C, an equimolar amount of
hexamethyldisilazane was added slowly via syringe (Scheme S3). The reaction solution was
allowed to warm to room temperature and then heated to reflux for 2 hours afterwards. The
ether was distilled under reduced pressure, and afterwards the product was distilled as a clear
liquid (yield: 80%).

'H NMR (400 MHz, Benzene-d6) & [ppm] = 0.09 (18H, s, [((CHa)sSiN]), 0.12 (2H, q,
[Zn(CH2)(CHs)]), 1.12 (3H, t, [Zn(CH2)(CHa)]).
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Scheme S3: Synthesis of ZnEt(HMDS)
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ALD Process characteristics — in-situ spectroscopic ellipsometry

The GPC values for the different ALD processes studied have been measured using in-situ
spectroscopic ellipsometry (isSE). The film thickness was calculated using a modified Cauchy
model and plotted as a function of deposition time. Si(100) substrates were primed with 20
ALD cycles of the DEZ-water process to establish ZnO as the growth surface. During the
temperature series, the reactor was given 30 minutes to reach thermal equilibrium. Then, 15
ALD cycles were performed for each parameter set, and the thickness change was recorded.
Ignoring the first and last two cycles, the growth rate was determined through linear regression
and converted to GPC, considering the specific deposition cycle duration, as exemplified for
Zn(DMP); in Figure S1.

a) GPC = b * cycle time = 0.0038 nm/s *22s =085 A b) GPC =b * cycle time = 0.0057 nm/s *22s =127 A
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Figure S1: Exemplary isSE measurements demonstrating the temperature dependence of the Zn(DMP)2 ZnO ALD
process. a) shows isSE data collected for a deposition performed at 150 °C, b) isSE data collected for a deposition
performed at 200 °C. Linear fits have been performed to extract the growth per cycle from the ellipsometry data.
Thickness data (D) has been obtained by applying a modified Cauchy model to the measured y and A.
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Figure S2: ALD saturation behavior for water co-reactant: growth per cycle versus H20 pulse length for the three
Zn precursors at 200 °C. a) DEZ pulse sequence 1-10-x-10, b) Zn(DMP): pulse sequence 2-10-x-10, ¢) Zn(EEKI)2
pulse sequence 2-10-x-10, and d) ZnEt(HMDS) pulse sequence 1-20-x-20.
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XPS

XPS measurements were performed on thin films deposited by each of the four precursors.
Peak fitting was undertaken for analysis and quantification. Below are the core-level spectra
and corresponding fits for ZnO deposited by the four precursors at 200 °C. Very similar spectra
were recorded for all samples and were fit using the same components. A charge correction
was applied to the adventitious C 1s aliphatic component, setting it to 284.8 eV for all samples.
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Figure S3: As-introduced XPS core level spectra for a ZnO film deposited with DEZ and H20 at 200°C. The a) Zn
2p, b) O 1s, c) C 1s core levels have been fitted with appropriate components.
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Figure S4: As-introduced XPS core level spectra for a ZnO film deposited with Zn(DMP)2 and H20 at 200°C. The
a) Zn 2p, b) O 1s, c) C 1s core levels have been fitted with appropriate components.
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Figure S5: As-introduced XPS core level spectra for a ZnO film deposited with Zn(EEKI)2 and H20 at 200°C. The
a) Zn 2p, b) O 1s, c) C 1s core levels have been fitted with appropriate components.
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Figure S6: As-introduced XPS core level spectra for a ZnO film deposited with ZnEt(HMDS) and H20 at 200°C. The
a) Zn 2p, b) O 1s, ¢c) C 1s core levels have been fitted with appropriate components.
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Figure S7: XPS core level spectra of a) sputtered Zn 2p, b) sputtered O 1s. Further, the as-introduced C 1s core
level spectra c) are shown, used for charge referencing all recorded spectra, as well as d) the sputtered C 1s
spectra. Spectra are stacked for the 4 different precursors used. Sputtering herein means 30 seconds at 2 keV.
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Figure S8: N 1s as-introduced XPS core level spectrum for a ZnO film deposited with Zn(EEKI)2 and H20 at 200°C.
No nitrogen signals beyond the noise level were detected after sputtering.
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Figure S9: ZnLMM Auger peak spectra for a ZnO films deposited using DEZ, Zn(DMP)z, Zn(EEKI)2, and
ZnEt(HMDS) with H20 at 200°C. The as introduced and the spectra after the first two sputter steps are shown
(dark to light).

Table S1: Modified Auger parameter (a) for ZnO thin films deposited using DEZ, Zn(DMP)2, Zn(EEKI)2, and
ZnEt(HMDS) with H20 at 200°C, alongside literature references. B.E. and K.E. values were for sputtered surfaces.

B.E. Zn 2p 3/2 K.E. Zn LMM a

(eV) (eV) (eV)
DEZ 1021.2 989.2 20104
Zn(DMP)2 1021 989.2 2010.2
Zn(EEKI): 1020.9 989.3 2010.2
ZnEt(HMDS) 10211 989.1 2010.2
1021.9 988.3 2010.2°
Literature ZnO 1021.6 988.8 2010.4°
2010.27
Literature Zn(0) 2013.87
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Figure S10: XPS composition depth profiles of ZnO films deposited using a) DEZ, b) Zn(DMP)z, ¢) Zn(EEKI)z, and
d) ZnEt(HMDS). Profiles were extracted from XPS data by integrating the peak areas of the respective components.
For Zn and Si, the 2p 3/2 component was used for the integration.
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Figure S11: UV/Vis absorption spectra of the ZnO thin films deposited from the four investigated precursors onto
quartz substrates. The significant difference in the absorbance intensity of the Zn(EEKI): film results from the
notably thinner film that was formed because of the lower growth rate with this precursor.

XRD and UV-Vis

Table S2: XRD full-width half-maxima for the (200) reflex of the ZnO thin films deposited using the four different
precursors. Peaks were fitted with a Gaussian peak shape. XRR fitted material densities and bandgap values from
UV-Vis measurements.

DEz Zn(DMP): Zn(EEKI)2 ZnEt(HMDS) Literature
Zn0 (200) FWHM / ° 0.43 0.44 0.71 0.30
Band gap / eV 3.24 3.20 3.32 3.19 3.378
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