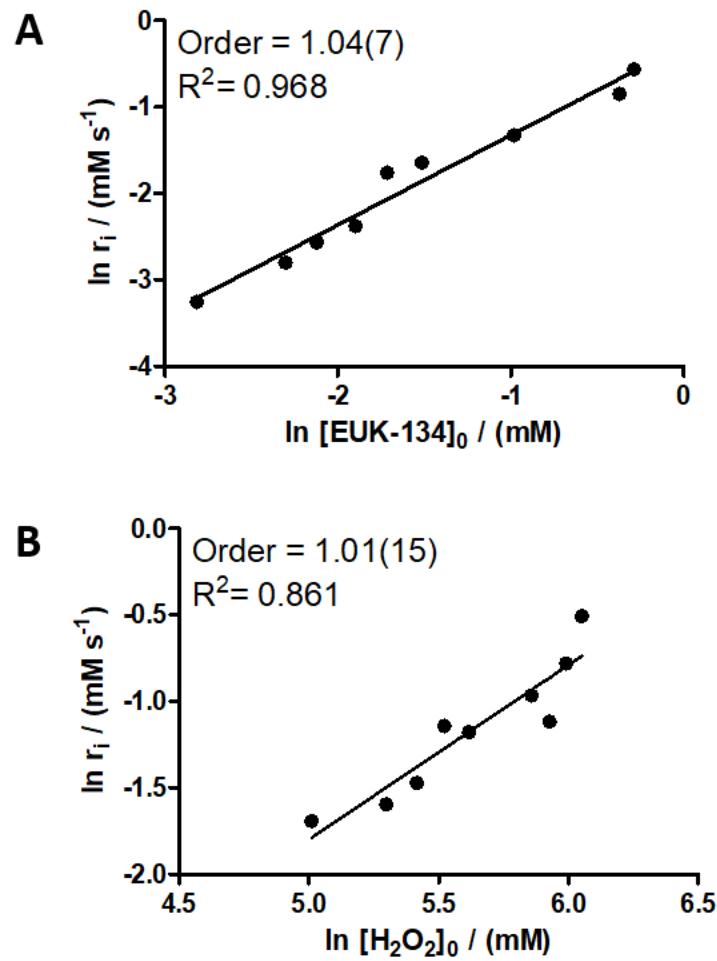


Supporting Information

**Fundamental Kinetic and Selectivity Properties of the Anti-Aging,
Antioxidant Active Ingredient EUK-134**


Nora Del Bosque^a, Grant T. Elam^b, David M. Freire^a, Timothy J. Hubin^b, and Kayla N. Green^a

^a Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76129

^b Department of Chemistry, Southwestern Oklahoma State University, Weatherford, OK 73096

Table of Contents

Figure S1. (A) Order with respect to EUK-134. $[H_2O_2]$ was held constant at 150 mM. ($y = 1.04x - 0.290$). (B) Plots used to determine the order of the reaction with respect to H_2O_2 . [EUK-134] was held constant at 0.2475 mM. ($y = 1.01x - 6.84$). For both: [Trizma] = 50 mM, pH = 8.1.	3
Table S1. Initial rates obtained for EUK-134 at a range of concentrations and $[H_2O_2]$ at 150 mM, resulting in an order of 1.04 with respect to EUK-134. Conditions are detailed in Figure S1.	4
Table S2. Initial rates obtained for EUK-134 at 0.2475 mM and H_2O_2 varied, resulting in an order of 1.01 with respect to EUK-134. Conditions are detailed in Figure S1.	4
Figure S2. (A) Order with respect to EUK-8. $[H_2O_2]$ was held constant at 150 mM. ($y = 1.00x - 1.78$) (B) Plots used to determine the order of the reaction with respect to H_2O_2 . [EUK-8] was held constant at 0.2475 mM. ($y = 1.0022x - 7.9612$). For both: [Trizma] = 50 mM, pH = 8.1.	5
Table S3. Initial rates obtained for EUK-8 at a range of concentrations and $[H_2O_2]$ at 150 mM, resulting in an order of 1.00 with respect to EUK-8. Conditions are detailed in Figure S2.	6
Table S4. Initial rates obtained for EUK-8 at 0.2475 mM and H_2O_2 varied, resulting in an order of 1.00 with respect to EUK-8. Conditions are detailed in Figure S2.	6
Table S5. EUK-134 catalase activity after multiple aliquots. $[H_2O_2] = 150$ mM, [Trizma] = 50 mM, pH = 8.1.	7
Table S6. EUK-8 catalase activity after multiple aliquots. $[H_2O_2] = 150$ mM, [Trizma] = 50 mM, pH = 8.1.	7
Table S7. Selectivity of EUK-134 for catalase vs peroxidase activity. Catalase assay conditions: 20 μ M EUK-R, 20 mM H_2O_2 (PBS, pH 7.4); Peroxidase assay conditions: 20 μ M EUK-R, 5 μ M H_2O_2 , 100 μ M ABTS (PBS, pH 7.4)....	8
Figure S3. Example of UV-vis spectra from (Left) Catalase assay: 20 mM EUK-134 upon addition of 20 mM H_2O_2 and (right) Peroxidase assay: 20 mM EUK-134, 100 mM ABTS, 5 mM H_2O_2 . For both: in phosphate buffer solution, pH 7.4.	8
Experimental Methods.	8

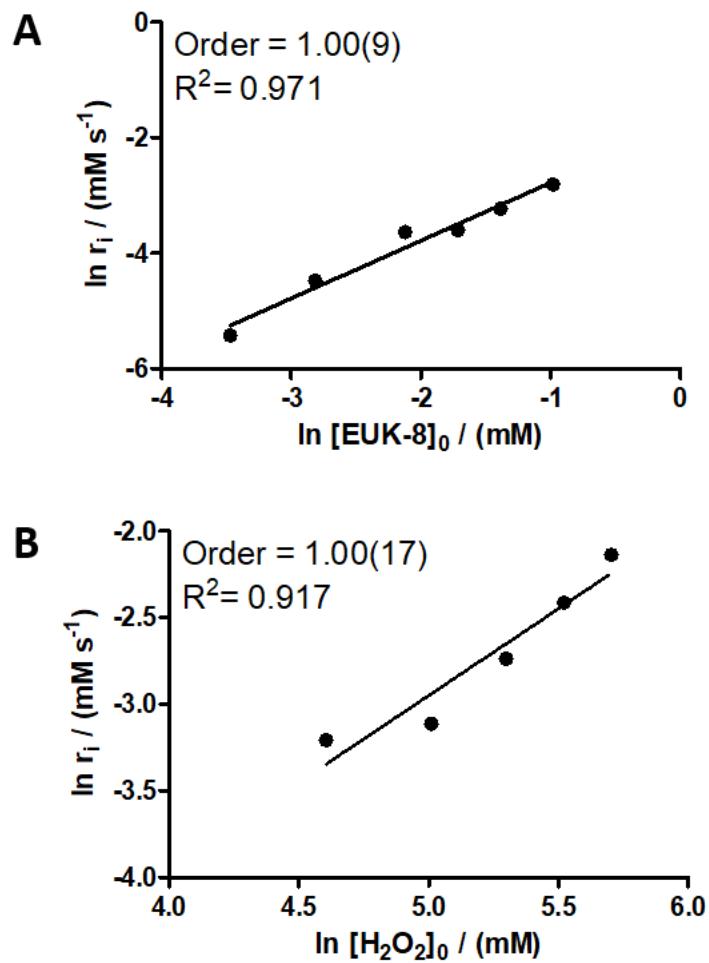

Figure S1. (A) Order with respect to EUK-134. $[H_2O_2]$ was held constant at 150 mM. ($y = 1.04x - 0.290$). (B) Plots used to determine the order of the reaction with respect to H_2O_2 . $[EUK-134]$ was held constant at 0.2475 mM. ($y = 1.01x - 6.84$). For both: $[Trizma] = 50$ mM, pH = 8.1.

Table S1. Initial rates obtained for EUK-134 at a range of concentrations and $[H_2O_2]$ at 150 mM, resulting in an order of 1.04 with respect to EUK-134. Conditions are detailed in Figure S1.

[EUK-134] (mM)	r_i (mM s ⁻¹)	$\ln[EUK-134]$ (mM)	$\ln(r_i)$ (mM s ⁻¹)
0.06	0.039	-2.81	-3.25
0.10	0.061	-2.30	-2.80
0.12	0.077	-2.12	-2.57
0.15	0.093	-1.90	-2.38
0.18	0.17	-1.71	-1.76
0.22	0.19	-1.51	-1.64
0.38	0.27	-0.98	-1.33
0.69	0.43	-0.37	-0.85
0.75	0.57	-0.29	-0.57

Table S2. Initial rates obtained for EUK-134 at 0.2475 mM and H_2O_2 varied, resulting in an order of 1.01 with respect to EUK-134. Conditions are detailed in Figure S1.

[H_2O_2] (mM)	r_i (mM s ⁻¹)	$\ln[H_2O_2]$ (mM)	$\ln(r_i)$ (mM s ⁻¹)
150	0.18	5.01	-1.69
200	0.20	5.30	-1.60
225	0.23	5.42	-1.47
275	0.32	5.52	-1.14
250	0.31	5.62	-1.18
375	0.38	5.86	-0.97
350	0.33	5.93	-1.12
400	0.46	5.99	-0.78
425	0.60	6.05	-0.51

Figure S2. (A) Order with respect to EUK-8. $[H_2O_2]$ was held constant at 150 mM. ($y = 1.00x - 1.78$) (B) Plots used to determine the order of the reaction with respect to H_2O_2 . [EUK-8] was held constant at 0.2475 mM. ($y = 1.0022x - 7.9612$). For both: [Trizma] = 50 mM, pH = 8.1.

Table S3. Initial rates obtained for EUK-8 at a range of concentrations and $[H_2O_2]$ at 150 mM, resulting in an order of 1.00 with respect to EUK-8. Conditions are detailed in Figure S2.

[EUK-8] (mM)	r_i (mM s ⁻¹)	$\ln[EUK-8]$ (mM)	$\ln(r_i)$ (mM s ⁻¹)
0.031	0.0044	-3.47	-5.43
0.060	0.011	-2.81	-4.48
0.120	0.021	-2.12	-3.85
0.180	0.026	-1.71	-3.65
0.250	0.039	-1.39	-3.23
0.375	0.062	-0.98	-2.79

Table S4. Initial rates obtained for EUK-8 at 0.2475 mM and H_2O_2 varied, resulting in an order of 1.00 with respect to EUK-8. Conditions are detailed in Figure S2.

[H_2O_2] (mM)	r_i (mM s ⁻¹)	$\ln[H_2O_2]$ (mM)	$\ln(r_i)$ (mM s ⁻¹)
100	0.040	4.61	-3.21
150	0.044	5.01	-3.11
200	0.065	5.30	-2.74
250	0.089	5.52	-2.41
300	0.12	5.70	-2.14

Table S5. EUK-134 catalase activity after multiple aliquots. $[H_2O_2] = 150$ mM, $[Trizma] = 50$ mM, pH = 8.1.

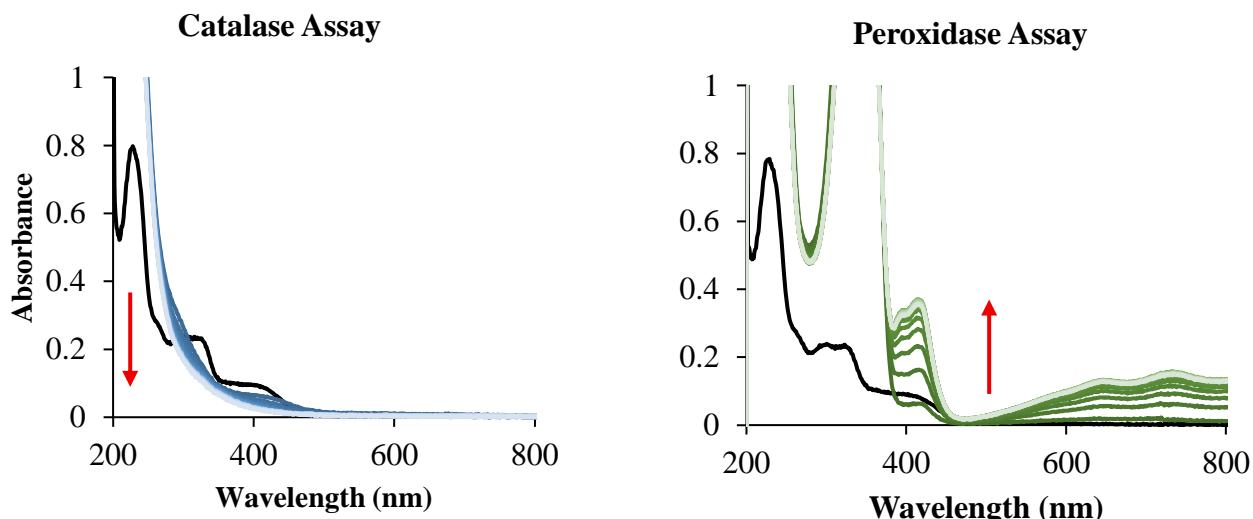

EUK-134	1st aliquot H_2O_2		
	TON	TOF (s⁻¹)	R_i (mM s⁻¹)
T1	27.44	0.18	0.61
T2	19.49	0.13	0.39
T3	25.08	0.17	0.45
Average	24.00	0.16	0.48
Standard Deviation	4.08	0.03	0.11
2nd aliquot H_2O_2			
T1	30.84	0.21	0.44
T2	31.45	0.21	0.42
T3	29.30	0.20	0.47
Average	30.53	0.20	0.45
Standard Deviation	1.11	0.01	0.02
3rd aliquot H_2O_2			
T1	20.62	0.10	0.19
T2	21.06	0.11	0.29
T3	20.56	0.10	0.30
Average	20.75	0.104	0.26
Standard Deviation	0.28	0.001	0.06

Table S6. EUK-8 catalase activity after multiple aliquots. $[H_2O_2] = 150$ mM, $[Trizma] = 50$ mM, pH = 8.1.

EUK-8			
Trial	TON	TOF (s⁻¹)	Rate (mM s⁻¹)
1	18.75	0.13	0.36
2	11.14	0.10	0.25
3	11.36	0.08	0.44
4	16.34	0.11	0.38
5	18.97	0.13	0.44
6	16.32	0.11	0.42
Average	15.48	0.11	0.42
Standard Deviation	3.47	0.018	0.03

Table S7. Selectivity of EUK-134 for catalase vs peroxidase activity. Catalase assay conditions: 20 μ M EUK-R, 20 mM H₂O₂ (PBS, pH 7.4); Peroxidase assay conditions: 20 μ M EUK-R, 5 μ M H₂O₂, 100 μ M ABTS (PBS, pH 7.4).

Trial	TON Catalase	TON Peroxidase	TOF Catalase	TOF Peroxidase	C/P
1	112.39	0.443	1.56 x 10 ⁻²	6.15 x 10 ⁻⁵	2.54 x 10 ²
2	145.41	0.518	2.02 x 10 ⁻²	7.19 x 10 ⁻⁵	2.81 x 10 ²
3	120.30	0.430	1.67 x 10 ⁻²	5.97 x 10 ⁻⁵	2.80 x 10 ²
Average	126.03	0.46	0.018	6.44 x 10 ⁻⁵	272
Standard Deviation	17.24	0.05	0.002	6.6 x 10 ⁻⁶	15

Figure S3. Example of UV-vis spectra from (Left) Catalase assay: 20 μ M EUK-134 upon addition of 20 mM H₂O₂ and (right) Peroxidase assay: 20 mM EUK-134, 100 mM ABTS, 5 mM H₂O₂. For both: in phosphate buffer solution, pH 7.4.

Experimental Methods

Quantifying Catalase Activity for Efficiency and Robustness Studies. Molecular oxygen evolution from the decomposition of H₂O₂ was measured via an O₂ microsensor probe (UniSense, Denmark) placed in a hermetically sealed 15 mL reactor. In each experiment, 1.5 mL of a 1.5 mM catalyst solution in 50 mM tris(hydroxymethyl)aminomethane (Tris) buffer (pH 8.1)

was added to the reactor. For calibration, room pressure was set at 159 mmHg then the cell was flushed with N₂ for 30 s until pressure reached 0 mV. Subsequently, 0.5 mL of 150 mM H₂O₂ was introduced, and measurements were conducted at 298 K. The reaction was recorded ΔP_{O_2} (mmHg) vs. time (seconds) until complete saturation occurred (V_{max}). The data were collected at 0.2 s intervals and the baseline-O₂ concentration, which was calculated from readings obtained 30 s before the initiation of the reaction was subtracted from all initial values.

Using the ideal gas law, ΔP_{O_2} was used to calculate the number of O₂ moles L⁻¹ produced from the headspace of the reactor (13 mL) via equation 1:

$$PV = nRT \quad (1)$$

P = pressure (atm), R = 0.08206 atm L mol⁻¹K⁻¹, n = millimoles (mM), T = 298 K and V = 0.013 L.

The TON was calculated for 1.5 mM EUK-134 (the total solution volume after H₂O₂ addition was 2 mL) via equation 2 for the total reaction time:

$$TON = \frac{\text{moles of O}_2 \text{ produced}}{\text{moles of Catalyst}} \quad (2)$$

The TOF was determined via equation 3:

$$TOF(s^{-1}) = \frac{TON}{\text{reaction time (s)}} \quad (3)$$

To determine whether complex decomposition resulted from reactions with H₂O₂ or pH fluctuations, the pH was monitored before and after the addition of H₂O₂. The tris buffer (pH 8.0) remained stable throughout the experiments, confirming that decomposition was driven by H₂O₂ interactions rather than environmental conditions. The robustness was evaluated by adding a single

aliquot of H₂O₂ (150 mM per aliquot) after oxygen evolution had plateaued from the previous H₂O₂ aliquot addition in the same closed cell.

Kinetics: Determining the reaction order with respect to the catalyst. To determine the reaction order with respect to the catalyst, experiments were conducted where the concentration of 150 mM H₂O₂ was held constant, and the concentration of the catalyst was varied in 50 mM Trisma buffer at 298 K with an O₂ microsensor probe (UniSense, Denmark) to obtain equation 4, which was derived from equation (1):

$$r_i = k_{obs}[\text{Catalyst}]^n \quad (4)$$

This setup analyzes the effect of the catalyst concentration on the r_i . In each experiment, the pressure from the evolution of O₂ was monitored over time, measured in mmHg, and converted to mM s⁻¹ of O₂ produced. The r_i was obtained by systematically calculating the slope over different time intervals after H₂O₂ injection (90-150 s, 150-210 s, 170-230 s, etc.) to identify the steepest slope, which is representative of the maximum rate at the initial point of the reaction (Equation 5):

$$r_i = \frac{\Delta[\text{O}_2]}{\Delta t} \quad (5)$$

The slope of the natural log of the initial rates represents the order with respect to the catalyst (n) in equation 1 (S1A & S2A). Equation (4) was rearranged to obtain equation (6), which is a linear relationship between the initial rates (mM s⁻¹) and the catalyst concentrations (mM) with the slope representing k_{obs} (s⁻¹) in **Figures 3a & 4a**:

$$k_{obs} = \frac{r_i}{[\text{catalyst}]} \quad (6)$$

To obtain the overall 2nd order constant kinetic constant (k) in equation 1, k_{obs} was divided by the constant concentration of 150 mM H₂O₂ used in this series of experiments (Equation 7):

$$k = \frac{k_{obs}}{[H_2O_2]} \quad (7)$$

Determining the reaction order with respect to H₂O₂. In a complementary set of experiments, the concentration of H₂O₂ varied while the concentration of catalyst was held constant. The initial rates of the reaction were again measured by monitoring the amount of oxygen produced. A plot of the initial rates (r_i) versus H₂O₂ concentration was used to determine k_{obs} , the reaction order with respect to H₂O₂ (m) and the overall 2nd order kinetic constant (k) (**Figure 3b, 4b, S1B, S2B**).

Selectivity Experimental Methods

Peroxidase Activity. This assay was adapted from previously reported methods by Doctrow *et al.* and Lu *et al.*, which inspired the design of our peroxidase activity measurements.^{1, 28} The peroxidase activity of the catalysts was determined by monitoring the H₂O₂-dependent oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to its radical cation (ABTS^{•+}) at 414 nm via UV-Vis spectrophotometry (200-900 nm). While Doctrow *et al.* monitored ABTS^{•+} formation at 714 nm, we opted to monitor the absorbance at 414 nm, which was based on the work of Cano *et. al.*, who experimentally determined the molar extinction coefficient to be $\epsilon_{414} = 31,100 \text{ M}^{-1} \text{ cm}^{-1}$.^{1, 32} Although there is a minor overlap with the catalyst absorbance at this wavelength, appropriate controls and background subtraction were used to accurately quantify the formation of ABTS^{•+}. The reaction was initiated by adding 5 μM H₂O₂ to a solution of phosphate-buffered saline (PBS, pH 7.4) containing 100 μM ABTS and 20 μM of the catalyst for a total volume of 3 mL in a quartz cuvette at 298 K. The increase in absorbance at 414 nm was monitored every 5 min over a 2-h period, indicating the formation of ABTS^{•+}. The molar extinction coefficient ($\epsilon_{414} = 31,100 \text{ M}^{-1} \text{ cm}^{-1}$) was used to calculate the concentration of ABTS^{•+}

during the reaction via Beer's Law ($A = \epsilon cl$).³² The controls included PBS (blank), H₂O₂ alone, ABTS alone, and the catalyst alone under identical conditions. The TON for peroxidase activity was calculated via equation 8:

$$TON_{Peroxidase} = \frac{\text{moles of ABTS}^+ \text{ Produced}}{\text{moles of Catalyst}} \quad (8)$$

The TOF was calculated via equation 9:

$$TOF_{Peroxidase}(s^{-1}) = \frac{TON_{Peroxidase}}{\text{reaction time (s)}} \quad (9)$$

Catalase Activity. The catalase activity of the synthesized catalysts was assessed by monitoring the disproportionation of H₂O₂ into water and oxygen via UV-vis spectrophotometry (200–900 nm range). The catalyst (20 μM) was added to a phosphate-buffered saline solution (PBS, pH 7.4) and the reaction was initiated by the addition of H₂O₂ (20 mM) for a total volume of 3 mL in a quartz cuvette at 298 K. The reaction was monitored every 5 min over a 2-h period by tracking the decrease in absorbance at 240 nm, which is characteristic of H₂O₂. The cuvette was inverted between each scan to ensure negligible oxygen interference. The concentration of H₂O₂ was determined via Beer's law ($A = \epsilon cl$) with a molar absorptivity of $\epsilon_{240} = 43.6 \text{ M}^{-1} \text{ cm}^{-1}$.²⁸ The TON of H₂O₂ consumption was calculated via equation 10, and the TOF was calculated via equation 11:

$$TON_{Catalase} = \frac{\text{moles of H}_2\text{O}_2 \text{ consumed}}{\text{moles of Catalyst}} \quad (10)$$

$$TOF_{Catalase}(s^{-1}) = \frac{TON_{Catalase}}{\text{reaction time (s)}} \quad (11)$$

The controls included PBS (blank), H₂O₂ alone, and the catalyst alone. The selectivity was calculated via equation 12:

$$\text{Selectivity } (C/P) = \frac{\text{Catalase}_{TOF(s^{-1})}}{\text{Peroxidase}_{TOF(s^{-1})}} \quad (12)$$