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Table S1: Comparison of PCE among various carbon-based photothermal agents

Photothermal reagent Wavelength PCE references
plys-CDs 655 nm 54.9% !
PBPTV@mPEG 808 nm 38.1% 2
FeNC@PEG 808 nm 34% 3
DCNPs@C@PEI@FA 808 nm 30% 4
Fe;04@C@Pt-Ce6 808 nm 28.28% 3
Feso-Zn-NCygg 808 nm 81.3% 6
yCDs-Ceb6 808 nm 54.2% 7
SNB 808 nm 33.1% 8
GCN-CQD 808 nm 67.08% This work
BC-PDA-Hb 1064 nm 47.8% ?
SPNE 1064 nm 88.8% 10
SSPNino 1064 nm 57.4% 1
CSMN2 1064 nm 31.6% 12
GQDs 1064 nm 33.45% 13
FDCN 1064 nm 36.3% 14




Supplementary Figures

Figure S1. Wet pH test strip (left) and wet test strip placed on the reaction solution
when the autoclave was opened at the end of reaction (right). Alkaline NH; could turn

the pH test strip green, indicating that NH; was generated during the synthesis of GCN-
CQD.
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Figure S2. Size distribution of carbon nanofiber diameter.




N
o
T

R 30} \
C
O
ool
€ 20
(@}
(o]
—
QO 10} \
1 >1—|

0 1 1 1 1
145 1.75 2.05 2.35 2.65 2.95 3.25
Diameter / nm

Figure S3. Size distribution of the carbon quantum dots.
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Figure S4. Raman spectrum of the GCN-CQD.
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Figure SS. FT-IR spectrum of the GCN-CQD.




Figure S6. Optical pictures of the as-synthesized GCN-CQD dispersed in water for
over 7 days. Results shown that the GCN-CQD possess excellent aqueous
dispersibility.
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Figure S7. Zeta potential of the GCN-CQD.
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Figure S8. XPS scanning spectrum of the GCN-CQD.
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Figure S9. XPS high-resolution survey scans of C 1s in the GCN-CQD.
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Figure S10. XPS high-resolution survey scans of N 1s in the GCN-CQD.
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Figure S11. Relative fluorescence change of GCN-CQD irradiated at 334 nm for 60

min.
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Figure S12. IR thermal images of different concentrations of GCN-CQD solution under

808 nm irradiation for 5 min
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Figure S13. IR thermal images of GCN-CQD solution (200 pg mL-!) irradiated with

808 nm laser to saturation temperature.
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Figure S14. The GCN-CQD's heating curves after five cycles of dispersion in distilled

water.
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Figure S15. The UV-Vis-NIR spectra of the mixed neutral solution (pH 7.4) and acid

solution (pH 5.0) containing TMB, H,0,, and GCN-CQD. The absorption peak

generated by TMB capturing -OH is at 651 nm, which indicates that GCN-CQD in

acidic conditions can generate more -OH.
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Figure S16. Detailed test data on the Michaelis-Menten fitting curves of the GCN-

CQD.
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Figure S17. The Lineweaver-Burke fitting (double reciprocal) of Michaelis-Menten

fitting curve of the GCN-CQD under 150 uL. TMB (10 mg-mL-").
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Figure S18. Detailed test data on the SA of the GCN-CQD.
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Figure S19. SA of the as-synthesized GCN-CQD.
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Figure S20. UV-Vis spectra of the mixed solution after 30 minutes of reaction in

different reaction systems (GCN-CQD/DPBF, GCN CQD/DPBF+NIR, and

MB/DPBF+NIR).
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Figure S21. Top view of four simulated models.
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Figure S22. Side view of four simulated models.
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Figure S23. Top view of four simulated models absorbed with H,O,. Bottom layer is

omitted for clarity.




Origin O-doped

C-vacancy Combined

Figure S24. Side view of four simulated models absorbed with H,O,.
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Figure S25. Quantified the confocal fluorescence intensity of calcein-AM/PI double-
stained 4T1 cells treated with GCN-CQD of under different conditions (a: pH 7.4, b:
pH7.4+NIR, c: pH 5.0, d: pH 5.0+NIR). The statistics showed that cell survival rate
was inversely proportional to concentration, acidity, and laser irradiation time under

different conditions.
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Figure S26. The viability of hTERT (a) RPE-1, (b) BEAS-2B cells after being treated
with the GCN-CQD.
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Figure S27. (a) Confocal images, (b) ROS intensity of DCFH-DA-stained 4T1 cells
treated with the GCN-CQD at pH 7.4 or 5.0.
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Figure S28. (a) Confocal images, (b) ROS intensity of DCFH-DA-stained 4T1 cells



treated with the GCN-CQD at pH 7.4+NIR or pH 5.0+NIR.
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Figure S29. Cell survival rate under intermittent laser irradiation (1 minute on/1 minute

off).
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Figure S30. MCV data of untreated mice (control) and mice treated with GCN-CQD

after 1 d, 3 d, and 5 d (n=3).
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Figure S31. MCH data of untreated mice (control) and mice treated with GCN-CQD

after 1 d, 3 d, and 5 d (n=3).
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Figure S32. BUN data of untreated mice (control) and mice treated with GCN-CQD

after 1 d, 3 d, and 5 d (n=3).
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Figure S33. Tumor growth curves of mice treated by PBS and the GCN-CQD over 16
days. (a) PBS, (b) PBS + NIR, (c) GCN-CQD, (d) GCN-CQD + NIR.
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