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Table S1: Comparison of PCE among various carbon-based photothermal agents

Photothermal reagent Wavelength PCE references

plys-CDs 655 nm 54.9% 1

PBPTV@mPEG 808 nm 38.1% 2

FeNC@PEG 808 nm 34% 3

DCNPs@C@PEI@FA 808 nm 30% 4

Fe3O4@C@Pt-Ce6 808 nm 28.28% 5

Fe50-Zn-NC900 808 nm 81.3% 6

yCDs-Ce6 808 nm 54.2% 7

SNB 808 nm 33.1% 8

GCN-CQD 808 nm 67.08% This work

BC-PDA-Hb 1064 nm 47.8% 9

SPNE 1064 nm 88.8% 10

SSPNiNO 1064 nm 57.4% 11

CSMN2 1064 nm 31.6% 12

GQDs 1064 nm 33.45% 13

FDCN 1064 nm 36.3% 14



Supplementary Figures

Figure S1. Wet pH test strip (left) and wet test strip placed on the reaction solution 

when the autoclave was opened at the end of reaction (right). Alkaline NH3 could turn 

the pH test strip green, indicating that NH3 was generated during the synthesis of GCN-

CQD.
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Figure S2. Size distribution of carbon nanofiber diameter.
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Figure S3. Size distribution of the carbon quantum dots.
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Figure S4. Raman spectrum of the GCN-CQD.
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Figure S5. FT-IR spectrum of the GCN-CQD.



Figure S6. Optical pictures of the as-synthesized GCN-CQD dispersed in water for 

over 7 days. Results shown that the GCN-CQD possess excellent aqueous 

dispersibility.
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Figure S7. Zeta potential of the GCN-CQD.
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Figure S8. XPS scanning spectrum of the GCN-CQD.
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Figure S9. XPS high-resolution survey scans of C 1s in the GCN-CQD.
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Figure S10. XPS high-resolution survey scans of N 1s in the GCN-CQD.
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Figure S11. Relative fluorescence change of GCN-CQD irradiated at 334 nm for 60 

min.



Figure S12. IR thermal images of different concentrations of GCN-CQD solution under 

808 nm irradiation for 5 min

Figure S13. IR thermal images of GCN-CQD solution (200 μg mL-1) irradiated with 

808 nm laser to saturation temperature.
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Figure S14. The GCN-CQD's heating curves after five cycles of dispersion in distilled 

water.
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Figure S15. The UV-Vis-NIR spectra of the mixed neutral solution (pH 7.4) and acid 

solution (pH 5.0) containing TMB, H2O2, and GCN-CQD. The absorption peak 

generated by TMB capturing ·OH is at 651 nm, which indicates that GCN-CQD in 

acidic conditions can generate more ·OH.
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Figure S16. Detailed test data on the Michaelis-Menten fitting curves of the GCN-

CQD.
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Figure S17. The Lineweaver-Burke fitting (double reciprocal) of Michaelis-Menten 

fitting curve of the GCN-CQD under 150 μL TMB (10 mg·mL-1).
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Figure S18. Detailed test data on the SA of the GCN-CQD.
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Figure S19. SA of the as-synthesized GCN-CQD.
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Figure S20. UV-Vis spectra of the mixed solution after 30 minutes of reaction in 

different reaction systems (GCN-CQD/DPBF, GCN CQD/DPBF+NIR, and 

MB/DPBF+NIR).

Figure S21. Top view of four simulated models.



Figure S22. Side view of four simulated models.

Figure S23. Top view of four simulated models absorbed with H2O2. Bottom layer is 

omitted for clarity.



Figure S24. Side view of four simulated models absorbed with H2O2.

Figure S25. Quantified the confocal fluorescence intensity of calcein-AM/PI double-

stained 4T1 cells treated with GCN-CQD of under different conditions (a: pH 7.4, b: 

pH7.4+NIR, c: pH 5.0, d: pH 5.0+NIR). The statistics showed that cell survival rate 

was inversely proportional to concentration, acidity, and laser irradiation time under 

different conditions.
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Figure S26. The viability of hTERT (a) RPE-1, (b) BEAS-2B cells after being treated 

with the GCN-CQD.

Figure S27. (a) Confocal images, (b) ROS intensity of DCFH-DA-stained 4T1 cells 

treated with the GCN-CQD at pH 7.4 or 5.0.

Figure S28. (a) Confocal images, (b) ROS intensity of DCFH-DA-stained 4T1 cells 



treated with the GCN-CQD at pH 7.4+NIR or pH 5.0+NIR.
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Figure S29. Cell survival rate under intermittent laser irradiation (1 minute on/1 minute 

off).
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Figure S30. MCV data of untreated mice (control) and mice treated with GCN-CQD 

after 1 d, 3 d, and 5 d (n=3).
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Figure S31. MCH data of untreated mice (control) and mice treated with GCN-CQD 

after 1 d, 3 d, and 5 d (n=3).
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Figure S32. BUN data of untreated mice (control) and mice treated with GCN-CQD 

after 1 d, 3 d, and 5 d (n=3).



Figure S33. Tumor growth curves of mice treated by PBS and the GCN-CQD over 16 

days. (a) PBS, (b) PBS + NIR, (c) GCN-CQD, (d) GCN-CQD + NIR.
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