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Section S1. General Materials and Measurements

All the reagents were purchased from the market and no further purification was
necessary, while the ligand CR4ACHO (tetraformylcalix[4]resorcinarene) was
synthesized using the method described in the literature procedure.S! 'TH NMR spectra
were recorded on a Bruker Avance 400 spectrometer operating at 400 MHz. Fourier
transform infrared (FT-IR) spectra were recorded on a Vertex 750 spectrometer using
the KBr pellet method, covering a wavenumber range from 4000 to 500 cm. TGA
measurements were carried out on a STA 449F3 analyzer with approximately 5-10
mg of sample in an alumina crucible, under a nitrogen atmosphere, at a heating rate of
10 °C/min from room temperature to 800 °C. The morphology was observed with a
SU8010 scanning electron microscope (SEM). MALDI-TOF mass spectra were
acquired on a Bruker ultrafleXtreme spectrometer. Powder X-ray diffraction (PXRD)
patterns were recorded on a Rigaku Mini 600 diffractometer using Cu Ka radiation (A
= 1.54 A). PXRD simulations were conducted utilizing the Mercury software package
(employing the single crystal data and diffraction crystal module), which is available

free of charge at http://www.ccdc.cam.ac.uk/products/mercury/.
Adsorption/desorption experiments

The N,, H, and D, adsorption-desorption isotherms of the adsorbent were measured
using a BSD Series 660M-0162 (High-Performance) Gas Sorption Analyzer at 77 K
and 87 K, respectively. Prior to gas adsorption measurements, CPOC-F301, CPOC-
301, and SMS-POC-1 were subjected to solvent exchange every 24 hours over a five-
day period. Approximately 100 mg of the solvent-exchanged samples was thermally
activated at 373 K for 12 h. Nitrogen (N;) physisorption isotherms were acquired at
77 K using a Micromeritics ASAP 2020 Plus surface area and porosity analyzer.
Temperature control during H,/D, adsorption was achieved using liquid nitrogen (for
77 K) and liquid argon (for 87 K) as cooling media. Pore size distribution analysis
was derived from the N, adsorption isotherm at liquid nitrogen temperature by
applying the DFT model (cylindrical pore geometry assumed) embedded in the

Micromeritics ASAP 2020 software. The material underwent an activation
S2
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pretreatment by being degassed at 373 K for 12 hours before the gas adsorption

measurements, ensuring a clean surface for accurate analysis.

Breakthrough Measurements

Dynamic gas breakthrough experiments were performed using a BSD-MAB
dynamic gas breakthrough system. Specifically, three samples (CPOC-F301, CPOC-
301, and SMS-POC-1) were individually packed into 1 mL quartz column, with a
small amount of quartz wool filled at both ends of each column to secure the samples.
Prior to breakthrough testing, the samples were activated at 373 K for 12 h under a
continuous neon (Ne) flow of 8 mL/min. The breakthrough column was left in a
cooling medium-filled Dewar flask for ~20 min to equilibrate, followed by the
breakthrough test. Dynamic breakthrough experiments were conducted using a
H,/D,/Ne (3/3/94, vol%) gas mixture at a flow rate of 8 mL/min, with the flow rate
controlled by a precision mass flow controller. The sample was regenerated by
purging with neon gas at a flow rate of 8 mL/min at 100 °C for 120 min, in
preparation for the cycling tests.

The complete breakthrough of D, was identified when the composition of the
downstream effluent matched that of the feed gas. The adsorption capacity was then

calculated based on a mass balance, as given by the following equation.
t

Cl-V F
q.= X f 1-—]dt
224 0 F

0 (Equation 1)
Where ¢g; refers to the equilibrium adsorption capacity of gas i (mmol-g!), C;
representsthe feed gas concentration, V' refers to the volumetric feed flow rate
(cm?-min!), t represents the adsorption time (min), £ and F, respectively, refer to the
inlet and outlet gas molar flow rates, and m represents adsorbent mass of (g). The

separation factor (o) of breakthrough experiment can be calculated as follows:

948

a —

9BV 4 (Equation
2)
In which”iis molar fraction of gas i (i=A4, B) in gas mixture.
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Isosteric heat of adsorption calculations

The data were fitted using a virial-type model incorporating parameters a; and b;
(Equation 3). The isosteric heat of adsorption (Qst) was determined from the fitting
parameters according to Equation 4, which was derived from the D,/H, adsorption
isotherms.

In (P) =In (N) + ;Za,zv’ + ijNi
i=0 j=0

(Equation 3)
m
0 =- RZ aiNi
i=0 (Equation 4)

TAST calculations of adsorption selectivity

To evaluate the separation capability of the material for D,/H,, pure-component
isotherms were fitted using the single-site Langmuir-Freundlich equation, and the
molar loadings in the mixture under specified bulk gas-phase partial pressures were
determined (Equation 5). The adsorption selectivity for D,/H, mixtures, based on the

Ideal Adsorbed Solution Theory (IAST), was calculated using Equation 6.

b, P!
N = Al—c1
1+byP (Equation

)

X4VB

SqB= X4 (Equation 6)

S4
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Section S2. Single-Crystal X-ray Crystallography

Single-Crystal X-ray Crystallography: Single-crystal X-ray diffraction data for
CPOC-F301 were collected on an XtaLAB Synergy R, HyPix diffractometer
equipped with a PhotonJet R (Cu) X-ray source (A = 1.5406 A). The crystal structure
was solved by direct methods and refined using the SHELXTL-2018 program
package.S? All non-hydrogen atoms were refined anisotropically. Hydrogen atoms of
the organic ligands were placed in calculated positions using a riding model and
refined with isotropic displacement parameters. The crystal structure was further
processed using the SQUEEZE routine implemented in the PLATON software
package to account for disordered solvent molecules.S* # Detailed crystallographic

data and cell parameters for CPOC-F301 are summarized in Table S1.
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131

132 Table S1. Crystallographic Data and Structure Refinement for CPOC-F301.
133

CPOC-F301
Formula C360 Haso Nog Oug
M/ g mol! 5883.48
T/K 100
Crystal system tetragonal
Space group P4/n
alA 32.1810(5)
b/A 32.1810(5)
c/A 37.8481(12)
a (®) 90
B 90
7 () 90
V /A3 39196.1(17)
z 2
4 (mm™1) 0.262
Data measured 99048
Ind. reflns 34253
Parameters 946
GOF on F? 0.962
R? [IHe(D] 0.0902
wR,P 0.2777
CCDC number 2498812

134 Ry =Y |[Fo| - [Fell/X[Fo|. "wRy = {X[W(Fo? - F2)?)/ X[w( Fo?)*]} 172

135
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Section S3. Synthetic Procedures and Characterizations

Synthesis of CPOC-F301:

C4RACHO (0.1 mmol, 41 mg) and trans-1,4-cyclohexanediamine (0.2 mmol, 12 mg)
were dissolved in 6 mL of CHCI; in a 20 mL pressure-resistant vial. The mixture was
sealed and stirred overnight at 65 °C. After cooling to room temperature, the solution
was equally distributed into 20 mL glass vials. Subsequently, 0.5 mL of PhNO, was
added to each vial, and red block-shaped crystals of CPOC-F301 were obtained by
slow vapor diffusion of methanol over one week. The crystals were washed with
methanol, yielding 69%. '"H NMR (400 MHz, CDCI3, 298 K): 6 14.60 (s, 1H), 11.19
(s, 1H), 8.66 (s, 1H), 7.24 (s, 1H), 4.53 (t, 1H), 2.07 (d, 1H), 1.96-1.89 (m, 1H), 1.52
(dd, 1H), 1.25 (s, 1H), 0.98(t, 6H) p.p.m. MALDI-TOF-MS: [M+NH,4]* caled. for
CPOC-F301 (C360H4s56N25045) 1s 5901.624; found 5901.310.

14.60
11.19
4.53

—3.33

209
93
66

€

B o JHL_,HJL

7 6

I i

16 15 14 13 12 11 10 [} 8 3 2 1
f1 (ppm)

Figure S1. 'H NMR spectrum of CPOC-F301. (The marked extra peaks, “*CH3;OH,

#H,0. The signals in the 7-9 ppm range are assigned to nitrobenzene.)
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154 Figure S2. FT-IR spectrum of CPOC-F301.
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157 Figure S3. MALDI-TOF-MS mass spectrum of CPOC-F301 from CDCl;.

S8



1004
e
S 60+
=
2P
5 401
204
0 T o1 v | A R R A | v T
100 200 300 400 500 600 700 800
158 T /°C
159 Figure S4. TGA curve of CPOC-F301.
— Simulated
As synthesized
CPOC-F301
3
&
2
=
2
=
[T
J‘l‘
T T T T T ] v ] L] v L}
0 5 10 15 20 25 30 35 40
160 20 (degree)
161 Figure S5. PXRD curves of CPOC-F301.
162 Note: the PXRD analysis showed that all the experimental powder X-ray
163 diffractograms of CPOC-F301 sample do not keep their original crystallinity
164 compared to the powder X-ray diffractograms calculated from their single crystal
165 structure data. This might be ascribed to that the packings of the isolated cage
166 compounds are assembled by weak supramolecular interactions, which are different
167 to MOFs and COFs assembled with much stronger coordination bonds and covalent
168 bonds, respectively. These phenomena are often observed in cage system, especially
169 for those with large cavities.>>’
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170
171 Figure S6. SEM image of CPOC-F301.
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174 Figure S7. '"H NMR spectra of CPOC-F301 under various conditions.
175

176
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178 Figure S8. 'H NMR spectra of CPOC-F301 after adsorption and breakthrough tests.
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181 Figure S9. Dynamic breakthrough curves of CPOC-F301 for D,/H,/Ne mixtures
182 under 87 K, 3/3/94 (vol%), 8 mL/min.

183
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185 Figure S10. The isosteric heat of D, and H, for CPOC-F301.
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188 Figure S11. A comparison diagram of the separation data of the three crystals.
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194 Figure S12. Single-site Langmuir-Freundlich fitting of (a) H, and (b) D, adsorption

195

196

isotherm of CPOC-F301 at 77 K.
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197 Figure S13. Single-site Langmuir-Freundlich fitting of (a) H, and (b) D, adsorption

198 isotherm of CPOC-F301 at 87 K.
(a) (b) :
7 | Parameter Value | Standard Deviation
. a, -1.087012e+03 4.747320e+00
a, 4.005577e+01 9.606158¢-01
5 oy, -2.476989¢+00 9.781192¢-02
o4 a, 1.161779¢-01 8.506738¢-03
= 5l a, -3.305687¢-03 3.265564e-04
o 3.876163e-05 4.590400e-06
2. Exp. at 77 K :
Exp. at 87 K by 1.335232e+01 5.668285e-02
1- — :g::g :: ;; i b, -1.287245¢-01 1.068636e-02
g 10 15 20 25 b, 4.266252e-03 4.532988e-04

0.9999

Uptake (mg/g)

Adj.r squared
199

200 Figure S14. (a) Virial equation fitting of D, adsorption isotherm of CPOC-F301 at
S13



201 77 K and 87 K. (b) Relevant fitting parameters for D,

@, ®) _
‘ -1.020848¢+03 2.441086¢+00
6- a 7.727080e+01 1.059891e+00
5| a, -9.783091¢+00 2.414917e-01
a 9.668802¢-01 4.566426¢-02
% 4 a -5.751852¢-02 3.830684¢-03
T 3- a 1.459888¢-03 1.179912¢-04
Exp. at 77K B 1.343978e+01 2.906208e-02
2- Exp. at 87 K L
— Fitting at 77 K b, -2.136464e-01 1.159024e-02
1r | | | — Fitting at 87K b, 1.378394e-02 1.046501e-03
2 4 6 8 10 12 pur squared 0.9999

202 Uptake (mg/g)
203 Figure S15. (a) Virial equation fitting of H, adsorption isotherm of CPOC-F301 at
204 77 K and 87 K. (b) Relevant fitting parameters for H,.

205

206 Table S2. Summary table of hydrogen isotope separation performance for different

207 porous materials at 1 bar and 77 K.

208
Compound D, H, Qst-D,  Qst-H,  Selectivity = Time  Ref.
(cm?g  (cm3/g) (KJ/mol (KJ/mol (min/g)
) ) )
CPOC-F301 147 134 9.03 8.48 1.37 72
This
CPOC-301 159 145 8.29 8.17 1.25 5.96
SMS-POC-1 163 151 7.67 7.40 1.16 63  Work
FJI-Y11 205 183 7.88 7.13 1.76 17 S8
Zn-MOF-74 212.8  190.4 9.2 8.3 1.75 0
Mg-MOF-74 296 271 12.8 11.3 3.24 10 S9
Ni-MOF-74 106 74 13.7 12.1 1.44 17
Cu-BTB 138 121 10.9 10.5 1.87 6.2 S10
ECUT-8 208 186 8.4 7.9 1.38 4 S11
FJI-Y9 2219 2023 6.2 6.0 13 - S12
FIR-29 1497 1368 6.1 58 12 -

S14



Cu-BTT 288 266 10.5 9.5 1.76 16 S13
MIL-101(Cr) 270 240 12.5 12 1.4 28 S14
ZJNU-119 358 325 7.6 7.2 1.37 38 S15
c-1a’ 88.8 80.6 ~8.8 ~8.8 1.6 7.5 S16
Activated 2 301 278 7.45 6.85 1.53 52 S17

209 --means the information was not given.

210

211

212
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213 Section S4. Various characterization data of the control group

214 materials

—2.09
— 1.26
— 1.04

f1 (ppm)

215
216 Figure S16. "H NMR spectrum of CPOC-301.
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219 Figure S17. PXRD curves of CPOC-301.
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221 Figure S18. FT-IR spectrum of CPOC-301.
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224 Figure S19. The adsorption isotherms of CPOC-301 at temperatures of 77 K and 87
225 K.
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227 Figure S20. Experimental breakthrough curves of CPOC-301 for the mixed gases of

228 D,/H,/Ne (3/3/94, v/v) at 77 K and 1 bar.
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231 Figure S21. IAST selectivity of CPOC-301 for equimolar D,/H, mixture at 77 K and

232 87 K.
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237 Figure S23. '"H NMR spectrum of SMS-POC-1.
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244 Figure S26. The adsorption isotherms of SMS-POC-1 at temperatures of 77 K and 87
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248 Figure S27. Experimental breakthrough curves of SMS-POC-1 for the mixed gases
249 of D,/H,/Ne (3/3/94, v/v) at 77 K and 1 bar.
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259 Figure S30. Single-site Langmuir-Freundlich fitting of (a) H, and (b) D, adsorption

260
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isotherm of CPOC-301 at 77 K.
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262 Figure S31. Single-site Langmuir-Freundlich fitting of (a) H, and (b) D, adsorption

263

264

isotherm of CPOC-301 at 87 K.
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265 Figure S32. Single-site Langmuir-Freundlich fitting of (a) H, and (b) D, adsorption

266

1sotherm of SMS-POC-1 at 77 K.

S23



(@) (b)s
@ 87K D2 @ 87K H:
4] —Fitcurve 491 —Fit curve
_— ~
E 34 SSLF g ;.\Iodel SSLF
E Eqution APBI*x* el {1 +b1*x cl) E 1 Eqution AlBL*x cl{l+hl*x"cl)
% 24 m.:;:i 6AB619E4 % 2 ?:.s::: ATTISEA4
;.)_ ?:‘n 1: 099066 ;ﬂ- ] ;::.) 1'2‘- 0.99969
Value Stamdard Valuwe Standard
= 14 Errer - 14 Error
m l Al 1237087 0.49271 : l Al 170351 043624
bl 002848 6.20905E-4 - bl 0.02785 S9SMSE4
04 el 067559 ooz <1 0.67517 0.00986
L 1 L] ) L L) D b L L] L] L] L) L]
0 20 40 60 80 100 0 20 40 60 80 100
267 Pressure (KPa) Pressure (KPa)

268 Figure S33. Single-site Langmuir-Freundlich fitting of (a) H, and (b) D, adsorption
269 isotherm of SMS-POC-1 at 87 K.

270
(a) (b)_ Parameter Value | Standard Deviation
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272 Figure S34. (a) Virial equation fitting of D, adsorption isotherm of CPOC-301 at 77

273 Kand 87 K. (b) Relevant fitting parameters for D,.

(a), (b)_ Standard Deviation
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275 Figure S35. (a) Virial equation fitting of H, adsorption isotherm of CPOC-301 at 77

276 K and 87 K. (b) Relevant fitting parameters for H,.
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278 Figure S36. (a) Virial equation fitting of D, adsorption isotherm of SMS-POC-1 at

279 77 K and 87 K. (b) Relevant fitting parameters for D,.

(a) (b) _ Standard Deviation
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281 Figure S37. (a) Virial equation fitting of H, adsorption isotherm of SMS-POC-1 at

282 77 K and 87 K. (b) Relevant fitting parameters for H.
283
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