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Experimental Section

Chemical 

Vanadium oxide (V2O5, 99.5%) was acquired from 3A, zinc acetate (Zn(CH3COO)2·2H2O, 

99%), hydrazine hydrate (N2H4, 99%), and aluminium acetate (Al(CH3COO)3·9H2O, AR) were 

bought from Sinopharm Chemical Reagent Corp.

Synthesis of Al doped ZnV2O4 sample

1 mmol Zn(CH3COO)2·2H2O and 1 mmol V2O5 were dispersed into 30 mL deionized water. 

Next, 1 mL N2H4 was added and stirred for 1 h. Subsequently, 0.04 mmol Al(CH3COO)3·9H2O was 

introduced, followed by stirring for 30 min. The mixture was sealed in a 50 mL autoclave, heated 

to 180 °C and maintained for 15 h. The resulting products were then thoroughly washed with 

deionized water and ethanol (three times each), followed by drying at 60 °C overnight. The resulting 

material was designated as Al-ZVO.

Synthesis of ZnV2O4 sample

ZnV2O4 was synthesized similarly to Al-ZVO, but without the addition of 

Al(CH3COO)3·9H2O. The resulting sample was designated as ZVO.

Characterization

Sample morphology was observed by scanning electron microscopy (SEM, TESCAN MIRA 

LMS, Czech Republic). The microstructure of Al-ZVO was examined using transmission electron 

microscopy (TEM, JEOL JEM-F200). The structure was analyzed by powder X-ray diffraction 

(XRD, Dandong Haoyuan-DX-2700BH). Surface chemical valence was determined by X-ray 

photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250Xi).

Electrochemical measurements

An electrode slurry comprising Al-ZVO, super P, and polyvinylidene fluoride (PVDF) in a 

weight ratio of 7:2:1. The slurry was coated onto 14 mm diameter stainless steel substrates. CR2025 

coin cells were assembled using the coated electrodes as the cathode, zinc foil (thickness of 0.07 

mm) and Whatman GF/D was used as counter electrode and separator, respectively. The 3M 

Zn(CF3SO3)2 aqueous solution is used as electrolyte with a volume of 50 µL for battery assembly. 

The loading of test electrodes is 1.4 ~ 2.5 mg cm-2. The average thickness of the electrode is 20 µm. 

Electrochemical performance was evaluated using a Neware Battery Test System.



Figure S1. (a-b) SEM images for ZnV2O4 sample.



Figure S2. TEM images of ZVO sample.



Figure S3. SEM Mapping of Al-ZVO sample.



Table S1. Charge transfer resistance for Al-ZVO and ZVO samples.

Sample Al-ZVO ZVO Error (%)

Rs (Ω) 0.76 1.9 0.9
Rct (Ω) 85 110 1.5

The equivalent circuit model shown in Figure 3f was selected to physically represent the 

electrochemical interfaces and processes in our system. It comprises Rs to describe ohmic 

resistance originated from contact resistance of components in the high frequency range, and 

Rct to model the charge transfer resistance in the mid-frequency range as well as W1 related to 

the Zn2+ diffusion in the electrode within low-frequency range. This model is well-established 

for intercalation-type cathode materials systems and provided an excellent fit to the 

experimental data across the entire frequency range.



Figure S4. CV curves of ZVO cathode.



Figure S5. The electrochemical kinetics of ZVO cathode: (a) CV curves at 0.1, 0.2, 0.6 and 1.0 

mV s-1, (b) log (scan rate) ~ log (i), (c) bar chart of capacitive and diffusion contributions, (d) 

capacitive (green) and diffusion (purple) contributions at 1.0 mV/s.



Table S2. Comparison of electrochemical performance of Al-ZnV2O4 cathode with other 

spinel oxides.

Sample Cycling 
performance Rate capability References

ZMn2O4/C
80 mA h g-1 after 

500 cycles at 0.5 A 
g-1

- [1]

MgV2O4

128.9 mA
h g−1 after 500 

cycles at 4.0 A g−1
176 mA h g-1 at 5 A g-1 [2]

ZnV2O4

206 mAh g-1 over 
1000

cycles at a 10 C
174 mA h g-1 at 20 C [3]

Ni-ZnMn2O4

181 mA h g-1 after 
100 cycles at 0.2 A 

g-1
84 mA h g-1 at 2 A g-1 [4]

MXene/ZnMn2O4

58 mA h g-1 after 
2000 cycles at 1 A 

g-1
84 mA h g-1 at 4 A g-1 [5]

Ni/Co-
ZnMn2O4@N-

rGO

95.4 mA h g−1 after 
900 cycles at 1 A 

g−1 
94 mA h g-1 at 1.5 A g-1 [6]

Mg2VO4

74 mA h g-1 after 
1000 cycles at 1 A 

g-1
125 mA h g-1 at 2 A g-1 [7]

ZnMn2O4·0.94H2

O

77 mA h g-1 after 
2000 cycles at 4 A 

g-1
28 mA h g-1 at 8 A g-1 [8]

MnCo2O4

81 mA h g-1 after 
250 cycles at 0.2 A 

g-1
175 mA h g-1 at 1 A g-1 [9]

Mn3O4

245 mA h g-1 after 
500 cycles at 0.5 A 

g-1
126 mA h g-1 at 1.5 A g-1 [10]

Al-ZnV2O4

147 mA h g-1 after 
940 cycles at 5 A g-

1
91 mA h g-1 at 20 A g-1 This work



Figure S6. DZn for ZVO and Al-ZVO samples. 
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