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Experimental Section:

Caution! The compounds in this work are energetic materials that could potentially explode
under certain conditions (e.g., impact, friction, or electric discharge). Appropriate safety
precautions, such as the use of shields in a fume hood and personal protection equipment (safety
glasses, face shields, ear plugs, as well as leather gloves) should be always taken when handling

these materials.

General. All reagents were purchased from BLD Pharma or TCI, or Merck in analytical grade
and were used as supplied. 'H, 3C{'H}, and "N NMR spectra were recorded JEOL DELTA
(ECS) 500 ('H, 500 MHz) and *C{'H} NMR (126 MHz, DMSO-d6) nuclear magnetic
resonance spectrometer. Chemical shifts for 'H NMR and 3C {'H} NMR spectra are given with
respect to external (CH;3)4Si (H and '3C). [d6] DMSO was used as a locking solvent unless
otherwise stated. IR spectra were recorded using Zn-Se pellets with an ECO-ATR spectrometer
(Bruker Alpha II). A single crystal of suitable dimensions was used for data collection.
Diffraction intensities were collected on a Bruker APEX-II CCD diffractometer, with graphite-
monochromated Mo Ka (0.71073 A) radiation at 100(2) K. Density was determined at room
temperature by employing an Anton Par Ultra5000 gas pycnometer. Decomposition
temperatures (onset) were recorded using a dry nitrogen gas purge and a heating rate of 5 °C
min~' on a thermogravimetric differential scanning calorimeter (TGA-DSC (SDT-650)).
HRMS was recorded on a Quadrupole Time-of-Flight Mass Spectrometry mass spectrometer
and ESI-MS was recorded on Agilent mass spectrometer. Impact and friction sensitivity

measurements were made using a standard BAM fall hammer and a BAM friction tester.
Experimental Section:

4,6-dihydrazineyl-2H-pyrazolo[3,4-d[pyrimidine (1): Compound 1 was synthesized according
to the reported literature method.[!!
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diethyl 2,2'-(10H-pyrazolo[4,3-e]bis([1,2,4]triazolo)[4,3-a:4",3'-c[pyrimidine-3, 7-
diyl)diacetate (2): Ethyl 3-ethoxy-3-iminopropanoate (6.52 g, 33.30 mmol) was dissolved in
10 mL of glacial acetic acid and to this compound 1 (2 g, 11.10 mmol) was added at room
temperature. The reaction mixture was gradually heated to reflux and stirred for 12 hours. After
completion, the excess solvent was removed using a rotary evaporator and water was added to
it and sonicated to yield compound 2 as a brown solid. (Yield: 3 g, 8.05 mmol, 73 %). '"H NMR
(500 MHz, DMSO-d6): & 14.18 (s, 1H), 8.91 (s, 1H), 4.52 (s, 2H), 4.44 (s, 2H), 4.15 - 4.10 (m,
4H), 1.18-1.13 (m, 6H). '3C NMR (126 MHz, DMSO-d6) 6 167.8, 167.6, 144.2, 143.8, 143.1,
142.9, 141.3, 127.02, 95.8, 61.1, 32.4, 32.3, 13.9. IR (ATR ZnSe): 3202, 3054, 2943, 1739,
1709, 1646, 1587, 1472, 1379, 1297, 1202, 1027, 940, 877, 776, 735 cm™!. Elemental Analysis

Calcd for C;sH sNgO4: C, 48.39; H, 4.33; N, 30.09. Found: C, 48.55; H,
4.36; N, 30.05. I3 2
S
4 J;;;‘;':'f‘
S
diethyl 2,2'-(10H-pyrazolo[4,3-e]bis([1,2,4]triazolo)[4,3-a:4',3'-c[pyrimidine-3,7-

diyl)bis(2,2-dinitroacetate) (3): Compound 2 (0.9 g, 2.42 mmol) was added portion-wise to the
mixture of 100% nitric acid (2 mL) and 98% sulfuric acid (3 mL) in an ice-water bath at 0 °C.
The reaction mixture was stirred at the same temperature for 20 minutes, then slowly warmed
to room temperature and stirred for an additional 10 hours. Upon completion, the reaction
mixture was slowly poured onto crushed ice with constant stirring. The resulting precipitate
was collected by filtration, washed with water (10 mL), and air-dried to afford compound 3 as
an off-white solid. (Yield: 1.2 g, 2.17 mmol, 90%). '"H NMR (500 MHz, DMSO-d6) 6 14.71
(s, 1H), 9.27 (s, 1H), 4.68-4.62 (m, 4H), 1.29 (t,J=7.1 Hz, 6H). 3C NMR (126 MHz, DMSO-
d6) & 155.2, 154.9, 147.8, 144.4, 140.9, 137.8, 136.8, 129.0, 129.9, 118.5, 96.8, 68.3, 68.0,
13.43, 13.38 IR (ATR ZnSe): 1778, 1647, 1612, 1585, 1297, 1234, 1038, 944, 844, 815, 793,
738 cm!. Elemental Analysis Calcd for CsH;,N1,01,: C, 32.62; H, 2.19; N, 30.43. Found: C,
32.56; H, 2.57; N, 30.82. HRMS (ESI-QTOF) m/z: Calculated for C;sH;3N;;,0;, (M+H)"
553.0770. Found: 553.0777.
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General procedure for the synthesis of salts 4a-4c:

aqueous ammonia (23.13 mg, 1.35 mmol), hydroxylamine hydrate (69.31 mg, 1.35 mmol), and
Hydrazine hydrate (67.92 mg, 1.35 mmol) were added slowly to compound 3 (500 mg, 0.90
mmol) in ethanol at room temperature. The mixture was stirred for 4 hours at same temperature,
after which the resulting precipitate was collected by filtration and then dried in air and isolated

the salts in quantitative yields.

diammonium 3,7-bis(dinitromethylene)-3H,7H,10H-pyrazolo[4,3-e[bis([1,2,4]triazolo)[4,3-
a:4',3'-c[pyrimidine-2,6-diide (4a): Yield: (340.32 mg, 0.85 mmol, 85%) as a light brown
solid. Td (onset): 193 °C. '"H NMR (500 MHz, DMSO-d6): & 8.94 (s, 1H), 7.63 (s, 8H); 13C
NMR (126 MHz, DMSO-d6): 6 143.7, 142.3, 141.8, 141.4, 140.7, 127.1, 122.6, 122.4, 95.7;
SN NMR (50.5MHz, DMSO-d6): 6 -25.73, -25.84, -30.34, -56.81, -63.74, -71.46, -85.12, -
102.00, -115.17,-221.49, -225.56. IR (ATR ZnSe): 3128, 3031, 1634, 1583, 1474, 1396, 1209,
1126, 927, 814, 740 cm’!. Elemental Analysis Calcd for CoH (N 4Og: C, 24.44; H, 2.28; N,
44.34. Found: C, 24.70; H, 2.10; N, 44.55.

dihydroxyl ammonium 3,7-bis(dinitromethylene)-3H,7H, 10H-pyrazolo[4,3-
elbis([1,2,4]triazolo)[4,3-a:4',3'-c[pyrimidine-2,6-diide (4b): Yield: (369.3 mg, 0.77 mmol,
75%) as a off white solid. Td (onset): 134 °C. "H NMR (500 MHz, DMSO-d6): & 14.15 (s, 1H),
10.21 (s, 8H), 8.94 (s, 1H); 3C NMR (126 MHz, DMSO-d6) & 143.9, 142.5, 141.9, 1415,
140.8, 127.3, 122.7, 122.6, 96.8; IR (ATR ZnSe): 1643, 1585, 1533, 1473, 1215, 1134, 1097,
962, 821, 753 cm!. Elemental Analysis Calcd for CoH;oN 4040 (0.2 H,0): C, 22.62; H, 2.19;
N, 41.04. Found: C, 22.20; H, 2.47; N, 40.90.

dihydrazinium 3,7-bis(dinitromethylene)-3H,7H,10H-pyrazolo[4,3-
elbis([1,2,4]triazolo)[4,3-a:4",3'-c[pyrimidine-2,6-diide (4c): Yield: (342.20 mg, 0.72 mmol,
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80%) as a light yellow solid. Td (onset): 194 °C. 'TH NMR (500 MHz, DMSO-d6): 6 8.94 (s,
1H), 7.38 (s, 10H); '3C NMR (126 MHz, DMSO-d6) 6 143.7, 142.4, 141.7, 141.4, 140.7, 127.1,
122.3, 122.4, 95.7; IR (ATR ZnSe): 3332, 3109, 1651, 1585, 1520, 1441, 1413, 1388, 1211,
1134, 1075, 959, 819, 735 cm™'. Elemental Analysis Calcd for CoH{,N;405: C, 22.89; H, 2.56;
N, 47.45. Found: C, 21.38; H, 2.54; N, 48.41.

triethyl 2,2',2""-(10H-pyrazolo[4,3-e[bis([1,2,4]triazolo)[4,3-a:4',3'-c[pyrimidine-3,7,10-
triyDtriacetate (5): Compound 2 (800 mg, 2.15 mmol) was dissolved in a mixture of
acetonitrile (10 mL) and water (5 mL) at room temperature. To this sodium carbonate (341.6
mg, 3.22 mmol) was added, and the reaction mixture was heated to 50 °C with stirring for 2
hours. The mixture was cool down, to this ethyl bromoacetate (717.6 mg, 4.297 mmol) was
added and again the mixture was heated to 70 °C for 12 hours. Upon completion the reaction,
the reaction mixture was concentrated under reduced pressure, and water was added. The
resulting new precipitate was collected by filtration to afford a brown solid compound 5. Yield:
(689 mg, 1.50 mmol, 70%) as a white solid. 'H NMR (500 MHz, DMSO-d6): 6 8.91 (s, 1H),
5.32 (s, 2H), 4.53 (s, 2H), 4.39 (s, 2H), 4.18 (q, 2H), 4.11 (m, 4H), 1.23 (t, 3H), 1.15 (m, 6H);
13C NMR (126 MHz, DMSO-d6) 6 167.7, 167.5, 167,2, 144.4, 143.2, 143.1, 142.9, 140.9,
129.8,96.7, 61.6, 61.1, 53.8, 32.4, 32.2, 14.0, 13.9; IR (ATR ZnSe): 2986, 1730, 1638, 1592,
1463,1400, 1377, 1329, 1246, 1214, 1019, 873, 777, 730, 656 cm™!. Elemental Analysis Calcd
for C9H»NgOg: C, 49.78; H, 4.87; N, 24.44. Found: C, 50.88; H, 5.17; N, 25.17.

2,2',2"-(10H-pyrazolo[4,3-e[bis([1,2,4]triazolo)[4,3-a:4",3 '-c[pyrimidine-3,7,10-

triyl)triacetic acid (6): Compound 5 (600 mg, 1.30 mmol) was dispersed in water (10 mL), and
sodium hydroxide (523 mg, 13.08 mmol) was added to it at room temperature with stirring.
The reaction mixture was then heated to 70 °C and maintained for 2 hours. Upon completion,

the mixture was cooled to 10 °C and acidified with 2 N sulfuric acid. The resulting precipitate
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was collected by filtration, washed with water, and dried at 50 °C to yield white coloured
compound 6. Yield: (367 mg, 0.98 mmol, 75%) as a white solid. 'H NMR (500 MHz, DMSO-
d6): 5 8.89 (s, 1H), 5.21 (s, 2H), 4.43 (s, 2H), 4.32 (s, 2H); 3C NMR (126 MHz, DMSO-d6) &
169.1,168.9, 168.7, 147.1, 143.5, 143.4, 129.6, 129.3, 124.3,97.2,32.3, 32.2; IR (ATR ZnSe):
3560, 3173,1728, 1642, 1597, 1495, 1402, 1305, 1271, 1217, 1181, 841, 809, 732, 700, 636
cm!. Elemental Analysis Caled for C3H;oNgOg (1.4H,0): C, 39.09; H, 3.23; N, 28.05. Found:
C, 39.00; H, 3.449; N, 27.95.
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2-(3, 7-bis(trinitromethyl)-10H-pyrazolo[4,3-e]bis([1,2,4]triazolo)[4,3-a:4',3"-c[pyrimidin-

10-yl)acetic acid (7): Compound 6 (500 mg, 1.33 mmol) was added slowly to a chilled mixture
of 100% nitric acid (2 mL) and concentrated sulfuric acid (3 mL) in an ice-water bath at 0 °C.
The reaction was maintained at this temperature for 20 minutes before being allowed to warm
to room temperature and stirred for 12 hours. Upon completion, the reaction mixture was
poured into crushed ice with stirring. The resulting precipitate was collected by filtration,
washed with cold water, and dried in air to afford a reddish-yellow solid, compound 7, rather
than the fully nitrated 3,7,10-tris(trinitromethyl)-10H-pyrazolo[4,3-e]bis([ 1,2,4]triazolo)[4,3-
a:4',3'-c]pyrimidine (7). Despite exploring various nitration conditions, attempts to obtain the
fully nitrated compound 7° were unsuccessful. Yield: (483 mg, 0.86 mmol, 88%) as a white
solid. Td (onset): 114 °C and 191 °C. 'H NMR (500 MHz, DMSO-d6): 4 9.31 (s, 1H), 5.28 (s,
2H); *C NMR (126 MHz, DMSO-d6) 6 167.9, 148.6, 145.3, 140.4, 134.8, 133.7, 131.9,97.2,
54.5; IR (ATR ZnSe): 3738, 3679, 3555, 2982, 2896, 1624, 1594, 1407, 1283, 1225, 955, 840,

796 cm!. Elemental Analysis Calcd for C;{H4N4014: C, 23.75; H, 0.72; N, 35.25. Found: C,
24.09; H, 0.60; N, 34.31..

10H-pyrazolo[4,3-e[bis([1,2,4]triazolo)[4,3-a:4',3'-c[pyrimidine-3,7-diamine (8): Compound
1 (1.5 g, 8.33 mmol) was dissolved in 15 mL of 1 N hydrochloric acid and stirred at room

temperature for 15 minutes. Cyanogen bromide (2.2 g, 20.81 mmol) was then added, and the
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mixture was heated to 70 °C in an oil bath and stirred for 15 hours. After completion of the
reaction, the mixture was cooled to room temperature and neutralized with sodium carbonate.
The resulting grey precipitate was collected by filtration, washed with water, and air-dried to
yield pure compound 8 as a dark grey solid. (Yield: 1.6 g, 6.95 mmol, 83%). '"H NMR (500
MHz, DMSO-d6): 6 8.60 (s, 1H), 6.58 (s, 2H), 6.42 (t, 2H). 3C NMR (126 MHz, DMSO-d6)
0 150.3, 148.9, 141.5, 138.4, 137.9, 125.6, 96.2. IR (ATR ZnSe): 3435, 3120, 1641, 1559,
1517, 1423, 1261, 792, 715 cm’!. Elemental Analysis Calcd for CsHgNyq (1.5H,0): C, 33.39;
H, 3.36; N, 55.62. Found: C, 33.35; H, 3.33; N, 55.65. HRMS (ESI-QTOF) m/z: Calculated
for C;H;N ;o (M+H)" 231.0850. Found: 231.0853.

N'-(9H-pyrazolo[4,3-e[bis([1,2,4]triazolo)[4,3-a:4',3 '-c[pyrimidine-3,7-diyl)dinitramide

(9): Compound 8 (1.0 g, 4.34 mmol) was slowly added to 4 mL of 100% nitric acid in an ice-
water bath at 0 °C with continuous stirring. The reaction mixture was maintained at this
temperature for 20 minutes, then allowed to warm to room temperature and stirred for an
additional 15 hours. Upon completion, the mixture was poured onto crushed ice with stirring.
The resulting precipitate was collected by filtration, washed with cold water, and air-dried to
obtain compound 9 as a reddish-yellow solid. (Yield: 1.21 g, 3.77 mmol, 87%). Td (onset): 213
°C. IH NMR (500 MHz, DMSO-d6): 6 14.27 (s, 1H), 8.92 (s, 1H). 13C NMR (126 MHz,
DMSO0-d6) 6 148.7, 147.2, 140.9, 138.3, 137.3, 128.0, 95.4. IR (ATR ZnSe): 3256, 1633, 1595,
1562, 1514, 1485, 1373, 1318, 1257, 1206, 1120, 1074, 1046, 962, 851, 774, 726, 691, 650 cm"
I. Elemental Analysis Calcd for C;H4N,04 (0.8H,0): C, 25.13; H, 1.69; N, 50.23. Found: C,
25.11; H, 1.72; N, 50.23. HRMS (ESI-QTOF) m/z: Calculated for C;H4N;,04Na (M+Na)*
343.0376. Found: 343.0365.

J
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General procedure for the synthesis of salts 10a-10c:
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aqueous ammonia (39.89 mg, 2.34 mmol), hydroxylamine hydrate (119.48 mg, 2.34 mmol),
S5H-[1,2,4]triazolo[4,3-b][ 1,2,4]triazole-3,5,6-triamine (360.52 mg, 2.268 mmol) and were
added slowly to compound 9 (500 mg, 1.56 mmol) in ethanol at room temperature. The mixture
was stirred for 4 hours at room temperature, after which the resulting precipitate was collected

by filtration and then dried in air and isolated them in quantitative yields.

diammonium (3Z2,7Z7)-3,7-bis(nitroimino)-3H,7H,10H-pyrazolo[4,3-
elbis([1,2,4]triazolo)[4,3-a:4',3'-c[pyrimidine-2,6-diide (10a): Yield: (481.48 mg, 1.36 mmol,
87%) as a light brown solid. Td (onset): 227 °C. 'H NMR (500 MHz, DMSO-d6): 6 8.64 (s,
1H), 7.20 (s, 8H); 13C NMR (126 MHz, DMSO-d6) 6 150.7, 149.4, 147.1, 141.2, 141.1, 125.3,
96.1; IR (ATR ZnSe): 2985, 2893, 1647, 1593, 1508, 1398, 1328, 1284, 1212, 852, 764, 721
cm!'. Elemental Analysis Calcd for C;H;oN1404 (0.3 CH3;CN): C, 24.90; H, 3.00; N, 54.64.
Found: C, 24.29; H, 3.04; N, 54.10.

dihydroxyl ammonium (3Z2,7Z7)-3,7-bis(nitroimino)-3H,7H,10H-pyrazolo[4,3-
elbis([1,2,4]triazolo)[4,3-a:4",3'-c[pyrimidine-2,6-diide (10b): Yield: (482.54 mg, 1.25
mmol, 80%) as a light yellow solid. Td (onset): 191 °C. 'H NMR (500 MHz, DMSO-d6):
8.69 (s, 1H), 7.15 (s, 8H); 3C NMR (126 MHz, DMSO-d6) 6 150.4, 149.3, 141.2, 140.8, 139.6,
125.8, 96.0; IR (ATR ZnSe): 3741, 2987, 2892, 2826, 1647, 1594, 1508, 1399, 1327, 1284,
1213, 1070, 989, 852, 763, 720 cm-!. Elemental Analysis Calcd for C;H (N 404 (0.8 H,O): C,
20.98; H, 2.92; N, 48.94. Found: C, 20.43; H, 3.48; N, 49.39.

di (3,6, 7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazol-2-ium) (32,7Z2)-3,7-
bis(nitroimino)-3H,7H,10H-pyrazolo[4,3-e[bis([1,2,4]triazolo)[4,3-a:4',3"-c[pyrimidine-2,6-
diide (10c): Yield: (814.56 mg, 1.29 mmol, 83%) as a light brown solid. Td (onset): 254.93 °C.
"H NMR (500 MHz, DMSO-d6): 6 13.83 (s, 1H), 8.70 (s, 1H), 7.79 (s, 4H), 7.11 (s, 4H), 5.75
(s, 4H); 3C NMR (126 MHz, DMSO-d6) 8 159.6, 150.7, 149.4, 148.1, 142.1, 141.2, 141.1,
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139.8, 125.4,96.1; ’N NMR (50.5MHz, DMSO-d6): 6 -14.55, -15.33,-79.89, -86.33, -112.31,
-131.10, -152.79, -177.44, -192.74, -201.90, -201.95, -205.13, -228.94, -264.54, -264.60, -
287.44, -317.01, -326.97, -329.84, -331.89. IR (ATR ZnSe): 2988, 2893, 1634, 1562, 1486,
1319, 1216, 1069, 964, 780, 718 cm-!. Elemental Analysis Calcd for C;3H;sN»sO4 (0.5 H,0):
C,24.49; H, 2.69; N, 61.52. Found: C, 24.77; H, 2.93; N, 61.06.

Prob = 50%
Temp = 100K
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Figure S1: Molecular Structure of S.

Table 1 Crystal data and structure refinement for 5.

CCDC No. 2482600
Empirical formula C19H,,NgOg
Formula weight 458.437
Temperature/K 273.15
Crystal system monoclinic
Space group P2,/c

a/A 14.810(4)
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b/A
c/A
a/°
pr°
y/°

Volume/A3

Z

Pearcg/cm’
wmm'!

F(000)

Crystal size/mm?

Radiation

18.242(5)
8.351(2)

90

105.380(7)

90

2175.3(10)

4

1.400

0.107

960.5
0.15x0.12 x 0.1
Mo Ka (A=0.71073)

20 range for data collection/°5.3 to 50.1

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?
Final R indexes [[>=2c (1)]

Final R indexes [all data]

-19<h<19,-24<k<24,-11<1<11
30400

3798 [Rin; = 0.0725, Rgigma = 0.0486]
3798/0/302

1.048

R;=0.0743, wR, = 0.1861

R, =0.0777, wR, = 0.1892

Largest diff. peak/hole / e A 0.63/-0.48
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NMR, IR Spectra, HRMS & TG-DSC plots
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Figure S2: '"H NMR spectrum of compound 2 in DMSO-dg in 500 MHz.
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Figure S45: 'H NMR spectrum of compound 10b in DMSO-dgin 500 MHz.
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Figure S46: >°C NMR spectrum of compound 10b in DMSO-dgin 126 MHz,
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Figure S47: IR spectrum of compound 10b.
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Figure S48: DSC spectra of compound 10b at a heating rate of 5 °C min'.
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Figure S49: '"H NMR spectrum of compound 10¢ in DMSO-dg in 500 MHz.
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Figure S53: DSC spectra of compound 10c¢ at a heating rate of 5 °C min‘!.

Computational details:

Computations were carried out using the Gaussian 09 program suite.’] The structure
optimizations are performed with B3LYP/6-31G(d,p) level of theory and characterized to be
true local energy minima on the potential energy surface, and no imaginary frequencies were
found. Heat of formation (HOF) is a measure of the energy content of an energetic material
that can decompose, ignite, and explode by heat or impact. It enters into the calculation of
explosive and propellant properties such as detonation velocity, detonation pressure, heat of
detonation and specific impulse. However, it is impractical to determine the HOF of novel
energetic materials because of their unstable intermediates and unknown combustion
mechanisms. Heats of formation for anions were calculated using the designed isodesmic
reactions (see Figure S54). Calculated total energies and related data for reference compounds

and target compounds are listed in Tables S2 and S3.
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ONLC /< \ (OzN)SC
2N)3
)\ NH + NH,-CH,-COOH —> )\ cooH
/{ N + NH3
C(NOy)3

C(NO,);
Compd. 7
N~N
)I\NH + 2NH, —> O,N )\)I\NH+2NH
N
H NO, NO,
O2N O,N

Anion for salts 4a-c

H
N—N —
0N /< \ O,N N ’{‘
N/ \N§<
N = N ——
)\  NH +2NH; —= )\ NH + 2 NH,
y

N \N_
H \/N \N
/
O2N O,N

Anion for salts 10a-c

Figure S54. Designed isodesmic reactions to compute heats of formation for anionic

components in salts 4a-c and 10a-c.

The computed HOF,s value for compound 7 using the isodesmic reaction approach is 469.4

kJ/mol. The use of HOFg, in the calculation of detonation properties slightly overestimates

the values of detonation velocity and detonation pressure. Therefore, the solid phase HOF

(HOFs,jiq) for compound 7 has been calculated, which can efficiently reduce these errors. The

HOFsg,iq 1s calculated as the difference between HOF g,s and heat of sublimation (HOFg,,) as,
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HOFg ;4 = HOFg, o — HOFg, (1)

The heat of sublimation (HOFg,;), which is required to convert the HOF g, to the HOF 554, Was
calculated from Equation (2)3

tot

HOFg,, = 0.000267 A® + 1.650087 (vo,2,)"° - 2.966078

2)
where, A represents the surface area of the 0.001 electrons/bohr® isosurface of electronic

density, v denotes the degree of balance between the positive and negative surface potentials,

2
and P tot is the electrostatic potential variance. The computed heat of sublimation for compound
7 using equation (2) is 244.6 kJ/mol. The molecular surface properties of compound 7, obtained

from the Multiwfn program, are listed in Table S4.

Based on the Born—Haber cycle (shown in Figure S55), the heat of formation of an ionic
compound can be simplified by subtracting the lattice energy of the salt (H.) from the total
heat of formation of salt (see Table S5) i.e. sum of the heats of formation of the cation and

anion as shown in equation (3).
HOF (salt, 298 K) = HOF (cation, 298 K) + HOF (anion, 298 K) - Hy. 3)

. . -AHOF
Cation” Anion” (Solid) OF L e+ nH,(g) + 0N, (g) + pO,(g)

l

Cation" (gas) + Anion” (gas)

Figure S55. Born-Haber cycle for the formation of energetic salts.

Lattice potential energy is the energy associated with the process in which a crystalline solid
lattice, M, X, is converted into its constituent gaseous ions, ,M?" (g) and , X7~ (g). The lattice

energy can be predicted with reasonable accuracy by using Jenkins’ equation (4).14
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H, =Upor + [p("TM -2)+ q(%x -2)IRT )

where nM and nX depend on the nature of the ions M," and X, respectively, and are equal to
3 for monoatomic ions, 5 for linear polyatomic ions, and 6 for nonlinear polyatomic ions. When
lattice potential energy (Upor), is incorporated and made part of a Born—Haber cycle, it needs
to be converted into a lattice enthalpy term. This lattice enthalpy (H;) involves correcting the

Upor term with an appropriate number of RT terms.

Table S2. Calculated total energies at 298K (E,), zero-point energies (ZPE), and thermal
corrections (Hr), and experimental/computed HOFg,, of reference/target compounds used in

1sodesmic reactions.

ZPE HOF g,
Compd. Ey (a.u.) Hrt (au)
(au) (kJ/mol)
NH;-Anion -55.826758 0.0178 0.0038 111.752
NH; -56.51952 0.0344 0.0038 -45.94

H
N—N

e
N
H
g N -1603.441445 | 0.1959 0.0228 828.0
N

N
\
N
H

NO,

NH
%N \N/ -1226.568636 | 0.1671 0.0171 879.9
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N—N
/< \
(O2N)sC
N -
)\ ~ /NH -2012.358217 0.196 0.0291 854.3
N N
=
N
C(NO2)3
N—N
e
(O2N)3C
N =
)\ ~ /N_\COOH -2240.203010 0.2393 0.0335 469.4
N7 TN N
\
N
C(NO2)3
NH,CH,COOH -284.34894 0.0801 0.0065 -390.5

aCalculated using G4 method.

Table S3. Calculated total energies (E,), zero-point energies (ZPE), and thermal corrections

(Hr) for anions.

Compd.

E, (a.u.)

ZPE
(au)

Hr
(au)

HOFanion
(kJ/mol)

-1602.386753

0.1692

0.0228

274.8

-1225.440286

0.1404

0.0175

495.8
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Table S4. Calculated molecular surface properties of compound 7.

Surface Balance
area Volume ot Parameter
Compd. (A3) (kcal/mol)
P (A?) »)
N—~N
O,N c/< \
(O2N)3 N _
)\ ~ /N_\COOH 421.06 473.83 260.52 0.0936
N7 N N
={
N
C(NO2)3
Table S5. Energy content of salts 4a-c and 10a-c.
Compd. HOF_ HOF,> Upot® H, 4 HOF,¢

4a 636.8 274.8 1138.3 1150.7 397.68
4b 675.6 274 .8 1130.2 1142.6 483.30
4c 769.5 274.8 1143.8 1156.2 657.50
10a 636.8 495.8 1231.1 1243.5 525.85
10b 675.6 495.8 1199.3 1211.7 635.26
10¢ 1112.0 495.8 1012.8 1025.2 1694.61

aHeat of formation of cation (kJ mol!). HOF, data for cations is obtained from Ref. 5. "Heat of
formation of anion (kJ mol'). °Lattice potential energy (kJ mol-!). dLattice energy (kJ mol!).

°Heat of formation of salt (kJ mol!).

Table S6. Optimized coordinates of compound 7 at B3LYP/6-31G(d,p) level of theory.

6 0.471332000  2.150985000  0.481870000
6 1.211210000  0.951872000  0.346761000
6  -0.958552000  2.121243000  0.388020000
7 0.545678000 -0.254616000  0.123965000
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-1.547030000

-0.826060000

1.450334000

2.513142000

-1.882577000

-3.094263000

-2.900145000

0.903100000

-0.170310000

-1.270426000

-3.997146000

2.283195000

2.230031000

1.949497000

2.463125000

-5.357666000

-5.918901000

-5.701064000

-3.976808000

-4.549070000

-3.407709000

-4.011539000

-5.020748000

-3.007329000

0.878357000

-0.298446000

3.106843000

1.116432000

3.053211000

2.441965000

1.158819000

-1.583094000

-2.328597000

-1.520044000

0.187160000

-2.121529000

-3.674480000

-4.177317000

-4.211527000

0.919414000

0.763224000

1.584566000

-0.966800000

-1.994077000

-0.675142000

-0.416832000

-1.010586000

-0.222101000

0.156204000

0.048947000

0.711083000

0.477514000

0.475747000

0.303499000

0.112705000

-0.015211000

-0.153394000

-0.115284000

-0.107510000

-0.000818000

0.012594000

-1.054943000

1.077359000

0.064576000

1.130839000

0.890551000

0.947687000

0.663453000

1.985943000

-1.531898000

-1.850600000

-2.198780000
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Table S7. Optimized coordinates of anion for salts 4a-c at B3LYP/6-31G(d,p) level of theory.

6

6

3.121364000

4.112944000

2.701954000

3.062520000

2.353162000

4.269470000

1.379619000

2.635047000

4.641262000

5.813292000

3.784699000

4.296881000

3.967541000

4.603550000

3.916792000

0.326952000

1.298166000

-1.048554000

0.989283000

-1.330940000

-0.340585000

1.057305000

-1.726502000

-2.394384000

-0.774267000

-1.681403000

-1.489705000

-1.600185000

4.171844000

2.448588000

3.340984000

3.613491000

3.320694000

3.534232000

3.014111000

2.304969000

3.932954000

2.520706000

1.576505000

2.108965000

0.240815000

0.782078000

-0.162081000

3.732736000

-1.240192000

-1.451167000

-1.879072000

1.278032000

2.249783000

1.197806000

0.869136000

0.708620000

-0.521187000

-0.594018000

-1.555932000

-2.355228000

0.812718000

1.344221000

1.402948000

-0.428487000

-0.118994000

-0.465741000

0.058520000

-0.143813000

0.104069000

-0.494217000
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2.349305000

2.488956000

2.159769000

3.203782000

2.726661000

1.710054000

0.851228000

-0.438291000

0.681365000

3.268968000

3.147723000

-3.526773000

4.058662000

3.558429000

5.287131000

3.583174000

4.692447000

2.798801000

-4.002493000

-4.807428000

-3.566941000

-3.815996000

-3.263802000

-4.563817000

3.548598000

2.206064000

2.772034000

1.886903000

0.702931000

-0.942053000

-1.921315000

-1.441801000

4.722137000

1.818032000

-1.140108000

-0.484164000

-0.458848000

0.434719000

-0.621212000

-2.080457000

-2.625781000

-2.308308000

-1.227740000

-2.164838000

-0.885900000

-0.759327000

0.003689000

-1.688597000

-0.233018000

-0.025340000

-0.685564000

-0.502511000

-0.179960000

0.270125000

0.461277000

0.348687000

0.714656000

0.516927000

0.117761000

0.101368000

0.896740000

1.673736000

0.830791000

-0.862265000

-0.767053000

-1.803328000

-0.980966000

-0.839918000

-2.111964000

1.438687000

2.277884000

1.785994000
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Table S8. Optimized coordinates of anion for salts 10a-c at B3LYP/6-31G(d,p) level of theory.

6

6

0.482922000

1.392907000

-0.932968000

0.894005000

-1.366301000

-0.475436000

1.298411000

2.576550000

2.664523000

1.949593000

3.098524000

2.772638000

1.488957000

0.525223000

-0.711950000

-3.670887000

2.828285000

-3.743982000

-3.073263000

-4.544077000

3.604018000

3.122412000

2.114338000

1.023684000

1.878345000

0.256747000

0.566474000

-0.498542000

3.221560000

2.750589000

1.400383000

2.707145000

1.949571000

0.663749000

-1.505059000

-2.371042000

-1.735706000

-0.328374000

-1.740265000

-1.289653000

-1.228116000

-2.225190000

-1.495062000

-1.154920000

0.020557000

-0.101884000

-0.050150000

-0.278875000

-0.202688000

-0.385022000

0.146378000

0.073754000

-0.070038000

-0.019271000

-0.141938000

-0.245454000

-0.560895000

-0.813439000

-0.705401000

-0.529167000

-0.757702000

0.402913000

1.466797000

0.184444000

0.305159000

1.419230000
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8 4.838650000 -1.644697000  0.147937000
1 1.066796000  4.268367000  0.269173000
1 3.430935000  3.265368000  0.199239000
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