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S.1 H, 13C{'H} and 3'P{*H} NMR Spectrum
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Fig. 1 'TH NMR Spectrum (500 MHz, 298 K, C¢Ds) for compound 2a
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Fig. 2 3C{"H} NMR Spectrum (126 MHz, 298 K, CgsDs) for compound 2a
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Fig. 3 3'"P{'"H} NMR Spectrum (202 MHz, 298 K, C¢Ds) for compound 2a
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Fig. 4 'TH NMR Spectrum (500 MHz, 298 K, C¢Ds) for compound 2b
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Fig.5 3C{'"H} NMR Spectrum (126 MHz, 298 K, CsDs) for compound 2b
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Fig. 6 3'P{'"H} NMR Spectrum (202 MHz, 298 K, C¢Ds) for compound 2b
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Fig. 7 "TH NMR Spectrum (500 MHz, 298 K, C¢Ds) for compound 3a
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Fig. 8 3C{"H} NMR Spectrum (126 MHz, 298 K, CsDs) for compound 3a
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Fig. 9 3'"P{"H} NMR Spectrum (202 MHz, 298 K, C¢Ds) for compound 3a
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Fig. 10 "H NMR Spectrum (500 MHz, 298 K, CsDs) for compound 3b
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Fig. 11 3C{'H} NMR (126 MHz, 298 K, CsDs) for compound 3b
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Fig. 12 3'P{"H} NMR Spectrum (126 MHz, 298 K, CsDs) for compound 3b
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Fig. 13 "TH NMR Spectrum (500 MHz, 298 K, C¢Ds) for compound 4a
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Fig. 14 '3C{'H} NMR Spectrum (126 MHz, 298 K, C¢D¢) for compound 4a
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Fig.15 3'P{"H} NMR Spectrum (202 MHz, 298 K, C¢Ds) for compound 4a
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Fig. 16 "H NMR Spectrum (500 MHz, 298 K, CsDs) for compound 4b
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Fig. 17 '8C{'H} NMR Spectrum (126 MHz, 298 K, C¢D¢) for compound 4b
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Fig. 18 3'P{"H} NMR Spectrum (202 MHz, 298 K, CsDs) for compound 4b
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Fig. 19 "H NMR Spectrum (500 MHz, 298 K, CDCI3) for compound rac-5a.
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Fig. 20 "8C{'H} NMR Spectrum (126 MHz, 298 K, C¢Dg¢) for compound 5a
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Fig. 21 3'P{"H} NMR Spectrum (202 MHz, 298 K, CDCl;) for compound rac-5a
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Fig. 22 "H NMR Spectrum (500 MHz, 298 K, CDCI3) for compounds rac-5b
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Fig. 24 3'P{"H} NMR Spectrum (202 MHz, 298 K, CDCl;) for compound rac-5b
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S.2 Single-Crystal X-ray Structure Determinations

Suitable single crystals were sealed under N; in thin-walled glass capillaries. X-ray
diffraction data of compounds 2a, 2b, 3a, 3b, 4a and 5a were collected on a SMART
APEX CCD diffractometer (Bruker, graphite-monochromated Mo-Ka radiation, ¢-w-scan
technique, A = 0.71073 A). The intensity data were integrated by means of the SAINT
program.l'l’ SADABS[?l was used to perform area-detector scaling and absorption
corrections. The structures were solved by direct methods and were refined against F2
using all reflections with the aid of the SHELXTL package. 81 All non-hydrogen atoms
were refined anisotropically. The H atoms were included in calculated positions with
isotropic thermal parameters related to those of the supporting carbon atoms but were
not included in the refinement. All non-hydrogen atoms were found from the difference
Fourier syntheses. All calculations were performed using the Bruker Smart program.
crystallographic data are given below in structural data tables 1, 2. CCDC 2513522 (2a),
2513523 (2b), 2513524 (3a), 2513525 (3b) and 2513526 (4a) contain the supplementary
crystallographic data for this paper. These data can be obtained free of charge via
www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or
by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge

CB2 1EZ, UK; fax: +44 1223 336033.



Fig. 27 Thermal ellipsoid (30%) plot of complex 2a. Hydrogen atoms are omitted except
for H3, and some groups are shown in wireframe for clarity. The asymmetric unit contains
half of a molecule of free toluene, which is not shown. Selected Bond Lengths (A) and
Angles (°): Mg(1)-N(3) 2.008(2), Mg(1)-N(2) 2.015(2), Mg(1)-N(1) 2.012(2), Mg(1)-C(1)
2.826(2), Mg(1)-C(2) 2.825(2), Mg(1)-C(3) 2.547(2), P(1)-C(1) 1.742(2), P(1)-C(13)
1.780(2), N(1)-C(1) 1.364(2), N(1)-C(8) 1.381(2), C(8)-C(13) 1.413(3), C(1)-C(2)
1.479(3), C(2)-C(3) 1.404(3), C(1)-P(1)-C(13) 87.56(9), N(1)-C(1)-P(1) 116.9(1),
N(1)-C(8)-C(13) 114.6(2), C(8)-C(13)-P(1) 110.9(1), C(1)-N(1)-C(8) 110.1(2),
N(1)-Mg(1)-N(2) 125.2(7), N(1)-Mg(1)-N(3) 122.3(7), N(3)-Mg(1)-N(2) 95.4(7).



Fig. 28 Thermal ellipsoid (30%) plot of complex 2b. Hydrogen atoms are omitted except for
H38, and some groups are shown in wireframe for clarity. The asymmetric unit contains half of a
molecule of free toluene, which is not shown. Selected Bond Lengths (A) and Angles (°):
Mg(1)-N(1) 2.017(1), Mg(1)-N(2) 2.013(1), Mg(1)-N(3) 2.007(2), Mg(1)-C(1) 2.842(3),
Mg(1)—-C(37) 2.893(3), Mg(1)—-C(38) 2.663(3), P(1)—C(1) 1.738(1), N(1)-C(1) 1.367(2), P(1)-C(32)
1.780(2), N(1)-C(31) 1.383(2), C(31)-C(32) 1.423(2), C(1)-C(37) 1.477(2), C(37)-C(38) 1.409(2),
C(1)-P(1)—C(32) 87.8(7), C(1)-N(1)-C(31) 110.1(1), N(1)—C(1)-P(1) 117.0(1), N(1)-C(31)-C(32)
114.3(1), C(31)—C(32)-P(1) 110.9(1), N(2)-Mg(1)-N(1) 130.4(6), N(3)-Mg(1)-N(1) 121.1(6),

N(3)-Mg(1)-N(2) 96.2(6).



Fig. 29 Thermal ellipsoid (30%) plot of complex 3a. Hydrogen atoms are omitted, and
some groups are shown in wireframe for clarity. Selected Bond Lengths (A) and Angles
(°): Mg(1)-0O(1) 2.047(2), Mg(1)-N(3) 2.055(2), Mg(1)-N(1) 2.063(2), Mg(1)-N(2) 2.065
(2), C(4)-N(1) 1.388(3), C(22)-N(1) 1.362(2), C(4)-C(18) 1.420(4), C(18)-P(1) 1.767(3),
C(22)-P(1) 1.744(3), N(1)-C(4)-C(18) 114.9 (2), C(4)-C(18)-P(1) 110.5(2),
N(1)-C(22)-P(1) 121.82(18), C(22)-N(1)-C(4) 109.6(2), C(22)-P(1)-C(18) 88.2(1),
O(1)-Mg(1)-N(3) 101.03(8), O(1)-Mg(1)-N(1) 103.33(8), O(1)-Mg(1)-N(2) 128.43(8),
N(3)-Mg(1)-N(1) 122.1(9), N(3)-Mg(1)-N(2) 93.1(8), N(1)-Mg(1)-N(2) 110.3(8).



Fig. 30 Thermal ellipsoid (30%) plot of complex 3b. Hydrogen atoms are omitted, and some
groups are shown in wireframe for clarity. The asymmetric unit contains half of a molecule of
free thf, which is not shown. Selected Bond Lengths (A) and Angles (°): Mg(1)-O(1) 2.036(2),
Mg(1)-N(2) 2.060(2), Mg(1)-N(3) 2.062(2), Mg(1)-N(1) 2.065(2), C(1)-N(3) 1.370(3), C(1)—P(1)
1.738(2), C(2)-N(3) 1.381(3), C(2)-C(9) 1.415(3), C(9)—P(1) 1.770(2), N(3)—C(1)-P(1) 116.8 (2),
N(3)-C(2)-C(9) 115.3(2), C(2)-C(9)-P(1) 110.4(2), C(1)-N(3)-C(2) 109.3(2), C(1)-P(1)-C(9)
88.1(1), O(1)-Mg(1)-N(2) 131.34(7), O(1)-Mg(1)—-N(3) 103.00(7), N(2)-Mg(1)-N(3) 107.96(7),

0(1)-Mg(1)-N(1) 99.09(7), N(2)-Mg(1)-N(1) 92.13(7), N(3)-Mg(1)-N(1) 125.94(7).
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Fig. 31 Thermal ellipsoid (30%) plot of complex 4a. Hydrogen atoms are omitted, and
some groups are shown in wireframe for clarity. Selected Bond Lengths (A) and Angles
): S(1)-Mg(1) 2.460(2), S(2)-Mg(1) 2.498(2), Mg(1)-N(3) 2.010(4), Mg(1)-N(2)
2.013(4), P(1)-C(7) 1.836(6), P(1)-C(14) 1.887(7), N(1)-C(7) 1.297(7), N(1)-C(8)
1.400(7), C(8)-C(14) 1.331(8), S(1)-P(1) 1.980(2), S(2)-P(1) 1.994(2), P(1)-S(1)-Mg(1)
81.51(6), P(1)-S(2)-Mg(1) 80.99(6), S(1)-Mg(1)-P(1) 42.09(4), S(2)-Mg(1)-P(1)
42.38(4), S(1)-Mg(1)-S(2) 84.37(6), S(1)-P(1)-S(2) 112.87(8), C(7)-P(1)-Mg(1)
147.5(2), N(3)-Mg(1)-N(2) 94.5(2), C(7)-N(1)-C(8) 113.2(5), C(7)-P(1)-C(14) 88.2(3),
C(14)-C(8)-N(1) 120.7(8), N(1)-C(7)-P(1) 112.5(4), C(8)-C(14)-P(1) 105.4(5).
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Fig. 32 Thermal ellipsoid (30%) plot of complex rac-5a. Hydrogen atoms are

omitted, and some groups are shown in wireframe for clarity.

Fig. 33 Unit cell of rac-5a, Hydrogen atoms are omitted for clarity.
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Table 1. Crystal and Data Collection Parameters of Complexes 2a, 2b and 3a.

2a-0.5toluene 2b-0.5toluene 3a
Formula Ca65HssMgN;P Cys55HssMgN;P C47HgoMgN;OP
Molecular weight 712.22 698.19 738.26
Crystal dimens (mm) 0.30x0.20x0.16  0.30x0.20x0.18  0.20x0.16 x 0.11
Crystal system Triclinic Triclinic Monoclinic
Space group P-1 P-1 Cc
Unit cell dimensions
a(A) 10.8701(15) 10.0667(15) 11.8726(3)
b(A) 12.3027(17) 11.3787(17) 19.6268(4)
c(A) 16.905(2) 18.648(3) 18.8009(4)
S (deg) 73.301(2) 96.792(2) 95.9250(10)
V(A3) 2062.3(5) 2037.3(5) 4357.60(17)
Z 2 2 4
Dc (g.cm?) 1.147 1.138 1.125
p#(mm) 0.117 0.117 0.114
F (000) 766.0 750.0 1592.0
Radiation Mo-K, Mo-K, Mo-K,
(A=0.710730A)
Temperature (K) 296.2 100.0 296.2
h,k,I range -12<h<12 -12<h<13 -14<h<14
-14<k<14 -14<k<14 -24<k<24
-220<7<20 -23<1<24 -23<1<23
No. of reflections 16358 16231 17742
measured
No. of unique 7249 [Rint 8630 [Rint 7913 [Rint
reflections 0.0250] 0.0268] 0.0203]
Completeness to & 99.6% [£=25.01] 92.7% [0=27.46] 100 % [£=26.00]

Refinement method

Data /
parameters
Goodness-of-fit on F?
Final R indices [/>2c

D]
R indices (all data)

restraints  /

Largest diff. peak and
hole (e-A-)

Full-matrix least-
squares on F2

7249/15/496

1.015
R, =0.0437
WR, =0.1138
R, =0.0609
WR, = 0.1250
0.28 and -0.45

Full-matrix least-
squares on F?

8630/84/516

1.066
R1=0.0453
wR2=0.1237
R, =0.0594,
WR2 =0.1325
0.41 and -0.42

Full-matrix least-
squares on F2

7913/2/507

1.046
R1=0.0342
wR2 =0.0851
R1=0.0399
wR2 =0.0884
0.14 and -0.21
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Table 2. Crystal and Data Collection Parameters of Complexes 3b and 4a .

3b-0.5thf 4a

Formula CysHpoMgN3;0, 5P Cy3Hs,MgN;PS,
Molecular weight 760.28 730.27
Crystal dimens (mm) 0.20 x0.20 x 0.18  0.20 x 0.20 x 0.20
Crystal system Triclinic Monoclinic
Space group P-1 C2/c
Unit cell dimensions

a(A) 11.1505(5) 38.470(4)

b(A) 12.2547(5) 13.3630(15)

c () 17.4420(7) 15.7513(17)
f(deg) 81.711(2) 93.695(2)
V(A3) 2195.67(16) 8080.4(15)

z 2 8

Dc (g.cm?) 1.150 1.201

M (mm') 0.116 0.220

F (000) 820.0 3120.0
Radiation Mo-K, Mo-K,
(A=0.710730A)
Temperature (K) 296.2 100.2
h,k,l range -13<h<13 45<h<38

-12<k<14 -15<k<15
-19<1<20 -18<1<18

No. of reflections 31142 20176
measured
No. of unique 7717 [Rine 7120 [Rint
reflections 0.0315] 0.0331]

Completeness to &

Refinement method

Data / restraints /
parameters
Goodness-of-fit on F?
Final R indices [/>2c

@]
R indices (all data)

Largest diff. peak and
hole (e-A-)

99.8 % [0=25.00]
Full-matrix least-
squares on F?
7717/35/544

1.117

R, =0.0521
WR, = 0.1219
R, =0.0637
WR, = 0.1302
0.29 and -0.30

99.8% [0=25.00]
Full-matrix least-
squares on F?
7120/363/450

1.034
R, =0.0860
WR, = 0.2334
R, =0.1064
WR; = 0.2560
1.30and -0.84
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