Supporting Information for

Investigation of organic hydrotrioxides (ROOOH) formation from RO₂ + OH reactions and their atmospheric impact by a chemical transport model, STOCHEM-CRI

M. Anwar H. Khan^{a,*}, Rayne Holland^a, Asan Bacak^{b,c}, Thomas J. Bannan^d, Hugh Coe^{d,e}, Richard G. Derwent^f, Carl J. Percival^g, Dudley E. Shallcross^{a,h,*}

^aAtmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Bristol, UK

^bAnkara University Cancer Research Institute, Balkiraz Mahallesi, Mamak Caddesi No:1/8, Mamak, Ankara, Turkey

^cTurkish Accelerator & Radiation Laboratory, Ankara University, Golbasi, Ankara, Turkey

^dDepartment of Earth and Environmental Science, Centre for Atmospheric Science, University of Manchester, Manchester, UK.

eNational Centre for Atmospheric Sciences, University of Manchester, Manchester, UK

^frdscientific, Newbury, UK

^gJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109, USA

^hDepartment of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7305, South Africa

*Corresponding authors: M Anwar H Khan (<u>anwar.khan@bristol.ac.uk</u>) and Dudley E. Shallcross (<u>d.e.shallcross@bristol.ac.uk</u>)

Contents of this file Table S1-S5, Figures S1-S3

CRI species name of RO2	MCM species name of RO2	Contribution to ROOOH (Tg/yr)	Contribution to ROH (Tg/yr)
СНЗО2	CH3O2	67.51	55.24
C2H5O2	C2H5O2	0.84	0.81
IC3H7O2	IC3H7O2	0.10	0.11
НОС2Н4О2	НОС2Н4О2	0.22	0.24
СН3СО3	СНЗСОЗ	4.78	5.11
С2Н5СО3	C2H5CO3	0.06	0.07
HOCH2CO3	HOCH2CO3	0.48	0.56
MACO3	MACO3	0.10	0.13
RN1902	HEXCO2, M2PEDO2, M3PECO2	0.01	0.01
RN1802	С650Н402, С60Н502, Н02С602	<0.01	<0.01
RN1702	HEX3ONAO2, EIPKAO2, M2BKAO2	0.01	0.01
RN16O2	PEAO2, PEBO2, PECO2	0.05	0.06
RN1502	С510Н202, С520Н302, Н02С502	<0.01	<0.01
RN14O2	MPRKBO2, DIEKAO2, MIPKAO2	0.03	0.03
RN13O2	NC4H9O2	0.67	0.76
RN12O2	HO1C4O2, BUT2OLO2	0.15	0.19
RN1102	MEKAO2, MEKBO2, BUTALO2	0.41	0.49
RN10O2	NC3H7O2	0.06	0.06
RN9O2	HYPROPO2, IPROPOLO2	0.05	0.06
RN8O2	PROPALO2, CHOC2H4O2	0.66	0.75
RN13AO2	SC4H9O2	0.02	0.02
RN16AO2	С6СОЗОН5О2, С69О2	<0.01	<0.01
RN15AO2	H01C502	0.08	0.11
RN18AO2	НО3С6О2, НО2М2С5О2	<0.01	0.01
NRN12O2	C42NO33O2	<0.01	<0.01
NRN9O2	PR102N03, PR202N03	<0.01	<0.01
NRN6O2	ETHO2NO3	<0.01	<0.01
RU14O2	ISOPAO2, ISOPBO2, ISOPCO2, ISOPDO2	2.51	3.12

Table S1. The production of ROOOH and ROH from the reaction R11b and R11d

RU12O2	C5702, C5802, C5902, HC4AC03, HC4CC03	1.62	2.14
RU10O2	MACRO2, MACROHO2, MACO3, HMVKAO2, HMVKBO2	1.06	1.33
NRU14O2	NISOPO2	0.05	0.06
NRU12O2	C510O2, NC4CO3	0.22	0.30
RU12AO2	MACRO2	0.03	0.04
DHPR12O2	C536O2, C537O2	0.01	0.02
RTN28O2	APINAO2, APINBO2, APINCO2	0.15	0.20
RTN26O2	PINALO2	0.26	0.37
RTN25O2	C96O2	0.68	0.93
RTN24O2	C97O2	0.68	0.94
RTN23O2	C98O2	0.74	1.03
RTN14O2	C614O2	0.60	0.80
RTN10O2	CO23C4CO3	0.38	0.50
NRTN28O2	NAPINAO2, NAPINBO2	0.04	0.05
RTX28O2	BPINAO2, BPINBO2, BPINCO2	0.22	0.30
RTX24O2	NOPINAO2, NOPINBO2, NOPINCO2, NOPIDO2	0.19	0.25
RTX22O2	C915O2, C917O2, C918O2, C89CO3	0.22	0.30
NRTX28O2	NBPINAOOH, NBPINBOOH	0.09	0.12
RA16O2	TLBIPERO2	0.04	0.05
RA13O2	BZBIPERO2	0.03	0.04
RA19AO2	OXYBIPERO2	0.02	0.02
RA19CO2	OXYLO2	< 0.01	0.01

Note: Structures of the species can be obtained using species name and search facility on MCM website (https://mcm.york.ac.uk/MCM/).

Species	Loss (s ⁻¹)	% contribution
Volatile Organic Compounds	1.56	65
Carbon monoxide	0.37	15
NOz	0.24	10
H ₂	0.07	3
H ₂ O ₂	0.05	2
RO ₂	0.05	2
O ₃	0.05	2
HO ₂	0.02	1

Location	Time	Longitude, Latitude	Observed OH	Modelled OH
			reactivity (s ⁻¹)	reactivity (s ⁻¹)
	T 1 4	4431 73317	.	<u> </u>
Whiteface Mountain, USA ¹	Jul-Aug	44N,73W	5.6	5.1
Nashville, USA ²	Jun-Jul	36N,86W	11.3	10.8
Borneo, Malaysia ³	AprMay	4N,117E	15.3	7.8
Amazon, Brazıl ⁴	Nov	2S,58W	17.1	14.2
Amazon, Brazil ⁴	Feb-Mar	2S,58W	9.5	15.9
Amazon, Brazil ⁴	Jun	2S,58W	26.2	21.5
Amazon, Brazil ⁴	Sep	2S,58W	53.7	13.2
Weybourne, UK ⁵	May	52N,1E	4.9	5.8
Yufa, China ⁶	Sep	39N,116E	19.7	6.5
Backgarden, China ⁷	July	23N,113E	31.4	7.7
Brownsberg, Surinam ⁸	Oct	4N,55W	53	11.5
Mainz, Germany ⁸	Aug	49N,8E	10.4	5.3
Jülich, Germany ⁹	Jul	50N,6E	8.6	5.2
Heshan, China ¹⁰	Oct-Nov	22N,112E	30.6	4.3
Beijing, China ¹⁰	Aug	39N,116E	20	5.5
Ersa, Corsica ¹¹	Jul-Aug	42N,9E	5	3.7
New York, USA ¹²	Jul	40N,73W	19	5
New York, USA ¹³	Jan	40N,73W	25.1	6.5
Pennsylvania, USA ¹⁴	May-Jun	40N,77W	6.1	5.7
Mexico city, Mexico ¹⁵	Apr	19N,99W	47.5	5
Houston, USA ¹⁶	Aug-Sep	29N,95W	9.4	3.7
La porte, Texas ¹⁶	Aug-Sep	29N,95W	12.24	4.5
Paris, France ¹⁷	Jan-Feb	48N,2E	40.3	4.6
Lilli, France ¹⁸	Oct	50N,3E	7.4	3.8
London, UK ¹⁹	Jul-Aug	51N,0W	18.1	4.4
Michigan, USA ²⁰	Jul-Aug	45N,84W	7.8	6.1
Hyytiälä, Finland ²¹	Aug	61N,24W	8.6	2.4
Hyytiälä, Finland ²²	Jul-Aug	61N,24W	11.5	3.1
Rocky Mountain, USA ²³	Aug	39N.105W	6.7	3.2
Haute Provence, France ²⁴	May-Jun	43N.5E	17.9	4.3
Alabama, USA ²⁵	Jun-Jul	32N,87W	19.4	12.4
California, USA ²⁶	Jun-Jul	39N.120W	17.3	3.4
North Pacific ²⁷	Apr May	20-60N,120-180W	4	1.1
Arabian Peninsula ²⁸	Jul-Aug	40-60N,0-60W	7.2	1.6
Shanghai, China ²⁹	Aug-Sep	31N,120W	38.4	4.6

Note: ¹Ren et al. (2006a), ²Kovacs et al. (2003), ³Edwards et al. (2013), ⁴Nölscher et al. (2016), ⁵Lee et al. (2009), ⁶Lu et al. (2010), ⁷Lou et al. (2010), ⁸Sinha et al. (2008), ⁹Elshorbany et al. (2012), ¹⁰Yang et al. (2017), ¹¹Zannoni et al. (2017), ¹²Ren et al. (2003), ¹³Ren et al. (2006b), ¹⁴Ren et al. (2005), ¹⁵Shirley et al. (2006), ¹⁶Mao et al. (2010), ¹⁷Dolgorouky et al. (2012), ¹⁸Hansen et al. (2015), ¹⁹Whalley et al. (2016), ²⁰Hansen et al. (2014), ²¹Sinha et al. (2010), ²²Nölscher et al. (2012), ²³Nakashima et al. (2014), ²⁴Zannoni et al. (2016), ²⁵Kaiser et al. (2016), ²⁶Mao et al. (2012), ²⁷Mao et al. (2009), ²⁸Pfannerstill et al. (2019), ²⁹Yang et al. (2022).

Table S4 : Annual tropospheric loss fluxes of the reactions of RO₂ with NO, NO₃, HO₂, RO₂ and OH

Species	Flux (molecules/yr)				
	RO2+NO	RO2+NO3	RO2+HO2	RO2+RO2	RO2+OH
CH3O2	1.81×10^{37}	2.16×10^{35}	1.66×10^{37}	1.32×10^{36}	5.77×10^{36}

C2H5O2	4.30×10^{35}	3.75×10^{33}	2.41×10^{35}	4.40×10^{33}	5.88×10^{34}
RN10O2	3.33×10^{34}	1.91 × 10 ³²	2.61 × 10 ³⁴	5.33 × 10 ³²	3.56 × 10 ³³
IC3H7O2	4.35×10^{34}	3.84 × 10 ³²	3.94 × 10 ³⁴	5.69 × 10 ³¹	5.85 × 10 ³³
RN13O2	3.82×10^{35}	3.48 × 10 ³³	2.83 × 10 ³⁵	2.21 × 10 ³³	3.45 × 10 ³⁴
RN16O2	2.19×10^{34}	2.10 × 10 ³²	1.95 × 10 ³⁴	1.28 × 10 ³²	2.10 × 10 ³³
RN19O2	8.34 × 10 ³³	5.62 × 10 ³⁰	3.62×10^{33}	4.13 × 10 ³¹	3.30 × 10 ³²
RN13AO2	1.77×10^{34}	1.87 × 10 ³¹	7.90 × 10 ³³	3.04 × 10 ³²	9.58 × 10 ³²
RN16AO2	8.98 × 10 ³²	9.10 × 10 ³⁰	7.83 × 10 ³²	2.30×10^{31}	8.39 × 10 ³¹
RA13O2	8.50 × 10 ³³	8.64 × 10 ³¹	8.99 × 10 ³³	1.66 × 10 ³²	8.58 × 10 ³²
RA16O2	2.06×10^{34}	1.70×10^{32}	1.19 × 10 ³⁴	8.14 × 10 ³¹	1.09×10^{33}
RA19AO2	1.16×10^{34}	9.28 × 10 ³¹	4.99 × 10 ³³	1.36 × 10 ³²	4.48 × 10 ³²
RA19CO2	4.95×10^{33}	3.98 × 10 ³¹	2.14×10^{33}	5.81 × 10 ³¹	1.92 × 10 ³²
HOCH2CH2O2	1.94×10^{35}	1.45×10^{33}	1.04×10^{35}	6.86×10^{33}	1.29×10^{34}
RN9O2	4.48×10^{34}	3.80 × 10 ³²	1.86×10^{34}	1.01×10^{33}	2.60×10^{33}
RN12O2	1.66×10^{35}	3.50 × 10 ³²	5.80 × 10 ³⁴	1.59 × 10 ³³	6.86 × 10 ³³
RN1502	8.60 × 10 ³²	7.13 × 10 ³⁰	7.73 × 10 ³²	1.87×10^{31}	7.92×10^{31}
RN18O2	8.84×10^{31}	1.62×10^{28}	1.30×10^{32}	2.48×10^{30}	8.52×10^{30}
RN15AO2	2.53×10^{34}	2.28×10^{32}	2.77×10^{34}	5.54 × 10 ³²	3.12×10^{33}
RN18AO2	5.11×10^{33}	2.95×10^{30}	1.63×10^{33}	6.61 × 10 ³¹	1.56×10^{32}
СН3СО3	4.17×10^{36}	7.97×10^{34}	1.38×10^{36}	1.01×10^{36}	2.85×10^{35}
С2Н5СО3	9.58×10^{36}	1.00×10^{33}	1.25×10^{34}	8.03 × 10 ³³	2.92×10^{33}
HOCH2CO3	4.33×10^{35}	7.98 × 10 ³³	1.23×10^{35}	1.02×10^{35}	2.46×10^{34}
RN8O2	2.21×10^{35}	1.81×10^{33}	2.18×10^{35}	9.93 × 10 ³³	3.42×10^{34}
RN1102	1.40×10^{35}	1.17×10^{33}	1.47×10^{35}	5.31×10^{33}	1.88×10^{34}
RN14O2	7.01×10^{33}	5.47 × 10 ³¹	9.35×10^{33}	3.22×10^{32}	1.00×10^{33}
RN17O2	1.55×10^{33}	1.21×10^{31}	2.04×10^{33}	7.91×10^{31}	1.90×10^{32}
RU14O2	1.79×10^{36}	1.44×10^{33}	1.41×10^{36}	1.07×10^{35}	1.02×10^{35}
RU12O2	3.80×10^{35}	1.67×10^{33}	7.08×10^{35}	1.81 × 10 ³⁵	5.34×10^{34}
RU10O2	6.17×10^{35}	4.72×10^{33}	5.19 × 10 ³⁵	5.68 × 10 ³⁴	4.26×10^{34}
NRN6O2	3.81×10^{31}	3.56 × 10 ³²	8.12 × 10 ³¹	2.85×10^{31}	2.81×10^{30}
NRN9O2	2.29×10^{32}	1.19 × 10 ³³	3.73×10^{32}	4.74×10^{31}	9.71 × 10 ³⁰

NRN12O2	4.90×10^{34}	2.03×10^{33}	1.54×10^{33}	1.90×10^{32}	3.49×10^{31}
NRU14O2	2.29×10^{34}	2.35×10^{34}	8.63 × 10 ³⁴	5.12×10^{34}	1.42×10^{33}
NRU12O2	4.71×10^{34}	6.61×10^{32}	7.80×10^{34}	1.81×10^{33}	5.62×10^{33}
RTN28O2	8.60×10^{34}	1.10 × 10 ³²	5.33 × 10 ³⁴	7.38 × 10 ³²	3.95×10^{33}
NRTN28O2	3.59×10^{34}	1.24×10^{34}	3.91 × 10 ³⁴	3.07×10^{33}	8.43 × 10 ³²
RTN26O2	1.94×10^{35}	2.58×10^{33}	3.46×10^{34}	4.09×10^{34}	6.69 × 10 ³³
RTN25O2	2.21×10^{35}	3.83×10^{33}	2.77×10^{35}	1.59 × 10 ³⁴	1.99 × 10 ³⁴
RTN24O2	1.83×10^{35}	3.77×10^{33}	2.35×10^{35}	8.61 × 10 ³¹	1.82×10^{34}
RTN23O2	1.70×10^{35}	2.62×10^{33}	2.18×10^{35}	4.97 × 10 ³¹	1.83×10^{34}
RTN14O2	1.69×10^{35}	1.96×10^{33}	1.92×10^{35}	4.74×10^{33}	1.84×10^{34}
RTN10O2	1.17×10^{35}	1.19 × 10 ³³	1.11 × 10 ³⁵	5.94 × 10 ³³	1.28×10^{34}
RTX28O2	9.31 × 10 ³⁴	2.58×10^{32}	8.47 × 10 ³⁴	6.72×10^{33}	5.83 × 10 ³³
NRTX28O2	2.78×10^{34}	7.71×10^{33}	3.86×10^{34}	1.71×10^{33}	1.91×10^{33}
RTX24O2	7.44×10^{34}	6.56×10^{32}	7.29×10^{34}	8.30×10^{32}	5.49×10^{33}
RTX22O2	4.84×10^{34}	3.85×10^{32}	7.52×10^{34}	4.17×10^{32}	5.97×10^{33}
RU10AO2	1.93×10^{34}	7.39×10^{30}	1.61×10^{34}	2.44×10^{35}	1.07×10^{33}
MACO3	1.04×10^{35}	5.90 × 10 ³²	4.76×10^{34}	2.77×10^{34}	4.05×10^{33}
DHPR12O2	5.25×10^{33}	4.39×10^{30}	4.18×10^{33}	2.36×10^{35}	3.07×10^{32}

Table S5. Losses of CH_3O_2 , $ISOPO_2$ and $MONOTERPO_2$ by different species

Species	$CH_{3}O_{2}(s^{-1})$	ISOPO ₂ (s ⁻¹)	MONOTERPO ₂ (s^{-1})
NO	3.14 × 10 ⁻³	2.60×10^{-2}	4.89 × 10 ⁻²
NO ₃	7.01 × 10 ⁻⁵	1.23×10^{-3}	2.10×10^{-3}
HO ₂	1.18 × 10 ⁻³	2.25×10^{-2}	4.01×10^{-3}
RO ₂	2.11 × 10 ⁻⁴	2.86×10^{-4}	2.39×10^{-4}
ОН	3.68×10^{-4}	2.58×10^{-3}	4.41×10^{-3}

Figure S1. (a) Annual ROH mixing ratios simulated by STOCH-RO2-OH-B, (b) Annual ROH mixing ratios change from STOCH-RO2-OH-D to STOCH-RO2-OH-B

Figure S2. Annual ROOOH mixing ratios simulated by STOCH-RO2-OH-D-OA

Figure S3. Vertical profiles for measured and modelled organic aerosols for selected remote sites. The red, blue, and green lines represent mean model values of OA produced by STOCH-Base, STOCH-RO2-OH, and STOCH-RO2-OH-D, respectively. The black triangles represent the flight campaign measurement OA data for remote sites compiled from Heald et al.³⁰ and the black bars represent the measurement variability.

References

1. X. Ren, W. H. Brune, A. Oliger, A. R. Metcalf, J. B. Simpas, T. Shirley, J. J. Schwab, C, Bai, U. Roychowdhury, Y. Li, C. Cai, K. L. Demerjian, Y. He, X. Zhou, H. Gao and J. Hou, OH, HO₂, and OH reactivity during the PMTACS-NY Whiteface Mountain 2002 campaign: Observations and model comparison, *J. Geophys. Res.-Atmos.*, 2006a, **111**, 1–12.

2. T. A. Kovacs, W. H. Brune, H. Harder, M. Martinez, J. B. Simpas, G. J. Frost, E. Williams, T. Jobson, C. Stroud, V. Young, A. Fried and B. Wert, Direct measurements of urban OH reactivity during Nashville SOS in summer 1999, *J. Environ. Monit.*, 2003, **5**, 68–74.

3. P. M. Edwards, M. J. Evans, K. L. Furneaux, J. Hopkins, T. Ingham, C. Jones, J. D. Lee, A. C. Lewis, S. J. Moller, D. Stone, L. K. Whalley and D. E. Heard, OH reactivity in a South East Asian tropical rainforest during the Oxidant and Particle Photochemical Processes (OP3) project, *Atmos. Chem. Phys.*, 2013, **13**, 9497–9514.

4. A. C. Nölscher, A. M. Yañez-Serrano, S. Wolff, A. C. de Araujo, J. V. Lavric, J. Kesselmeier and J. Williams, Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity, *Nature Commun.*, 2016, **7**, 10383.

5. J. D. Lee, J. C. Young, K. A. Read, J. F. Hamilton, J. R. Hopkins, A. C. Lewis, B. J. Bandy, J. Davey, P. Edwards, T. Ingham, D. E. Self, S. C. Smith, M. J. Pilling and D. E. Heard, Measurement and calculation of OH reactivity at a United Kingdom coastal site, *J. Atmos. Chem.*, 2009, **64**, 53–76.

6. K. Lu, Y. Zhang, H. Su, T. Brauers, C. C. Chou, A. Hofzumahaus, S. C. Liu, K. Kita, Y. Kondo, M. Shao, A. Wahner, J. Wang, X. Wang and T. Zhu, Oxidant $(O_3 + NO_2)$ production processes and formation regimes in Beijing, *J. Geophys. Res. Atmos.*, 2010, **115**, D07303.

7. S. Lou, F. Holland, F. Rohrer, K. Lu, B. Bohn, T. Brauers, C. C. Chang, H. Fuchs, R. Häseler, K. Kita, Y. Kondo, X. Li, M. Shao, L. Zeng, A. Wahner, Y. Zhang, W. Wang and A. Hofzumahaus, Atmospheric OH reactivities in the Pearl River Delta – China in summer 2006: measurement and model results, *Atmos. Chem. Phys.*, 2010, **10**, 11243–11260.

8. V. Sinha, J. Williams, J. N. Crowley and J. Lelieveld, The comparative reactivity methoda new tool to measure total OH reactivity in ambient air, *Atmos. Chem. Phys.*, 2008, **8**, 2213– 2227.

9. Y. F. Elshorbany, J. Kleffmann, A. Hofzumahaus, R. Kurtenbach, P. Wiesen, T. Brauers, B. Bohn, H. P. Dorn, H. Fuchs, F. Holland, F. Rohrer, R. Tillmann, R. Wegener, A. Wahner, Y. Kanaya, A. Yoshino, S. Nishida, Y. Kajii, M. Martinez, D. Kubistin, H. Harder, J. Lelieveld, T. Elste, C. Plass-Dlmer, G. Stange, H. Berresheim and U. Schurath, HO_x budgets during HOxComp: A case study of HO_x chemistry under NO_x-limited conditions, *J. Geophys. Res.-Atmos.*, 2012, **117**, 1–16.

10. Y. Yang, M. Shao, S. Keßel, Y. Li, K. Lu, S. Lu, J. Williams, Y. Zhang, L. Zeng, A. C. Nölscher, Y. Wu, X. Wang and J. Zheng, How the OH reactivity affects the ozone production efficiency: case studies in Beijing and Heshan, China, *Atmos. Chem. Phys.*, 2017, **17**, 7127–7142.

11. N. Zannoni, V. Gros, R. Sarda Esteve, C. Kalogridis, V. Michoud, S. Dusanter, S. Sauvage, N. Locoge, A. Colomb and B. Bonsang, Summertime OH reactivity from a receptor coastal site in the Mediterranean Basin, *Atmos. Chem. Phys.*, 2017, **17**, 12645–12658.

12. X. Ren, H. Harder, M. Martinez, R. L. Lesher, A. Oliger, T. Shirley, J. Adams, J. B. Simpas and W. H. Brune, HO_x concentrations and OH reactivity observations in New York City during PMTACS-NY2001, *Atmos. Environ.*, 2003, **37**, 3627–3637.

13. X. Ren, W. H. Brune, J. Mao, M. J. Mitchell, R. L. Lesher, J. B. Simpas, A. R. Metcalf, J. J. Schwab, C. Cai, Y. Li, K. L. Demerjian, H. D. Felton, G. Boynton, A. Adams, J. Perry, Y. He, X. Zhou and J. Hou, Behavior of OH and HO₂ in the winter atmosphere in New York City, *Atmos. Environ.*, 2006b, **40**, 252–263.

14. X. Ren, W. H. Brune, C. A. Cantrell, G. D. Edwards, T. Shirley, A. R. Metcalf and R. L. Lesher, Hydroxyl and peroxy radical chemistry in a rural area of central Pennsylvania: Observations and model comparisons, *J. Atmos. Chem.*, 2005, **52**, 231–257.

15. T. R. Shirley, W. H. Brune, X. Ren, J. Mao, R. Lesher, B. Cardenas, R. Volkamer, L. T. Molina, M. J. Molina, B. Lamb, E. Velasco, T. Jobson and M. Alexander, Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003, *Atmos. Chem. Phys.*, 2006, **6**, 2753–2765.

16. J. Mao, X. Ren, S. Chen, W. H. Brune, Z. Chen, M. Martinez, H. Harder, B. Lefer, B. Rappenglück, J. Flynn and M. Leuchner, Atmospheric oxidation capacity in the summer of Houston 2006: Comparison with summer measurements in other metropolitan studies, *Atmos. Environ.*, 2010, **44**, 4107–4115.

17. C. Dolgorouky, V. Gros, R. Sarda-Esteve, V. Sinha, J. Williams, N. Marchand, S. Sauvage, L. Poulain, J. Sciare and B. Bonsang, Total OH reactivity measurements in Paris during the 2010 MEGAPOLI winter campaign, *Atmos. Chem. Phys.*, 2012, **12**, 9593–9612.

18. R. F. Hansen, M. Blocquet, C. Schoemaecker, T. Léonardis, N. Locoge, C. Fittschen, B. Hanoune, P. S. Stevens, V. Sinha and S. Dusanter, Intercomparison of the comparative

reactivity method (CRM) and pump-probe technique for measuring total OH reactivity in an urban environment, *Atmos. Meas. Tech.*, 2015, **8**, 4243–4264.

19. L. K. Whalley, D. Stone, B. Bandy, R. Dunmore, J. F. Hamilton, J. Hopkins, J. D. Lee, A. C. Lewis and D. E. Heard, Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone production, *Atmos. Chem. Phys.*, 2016, **16**, 2109–2122.

20. R. F. Hansen, S. M. Griffith, S. Dusanter, P. S. Rickly, P. S. Stevens, S. B. Bertman, M. A. Carroll, M. H. Erickson, J. H. Flynn, N. Grossberg, B. T. Jobson, B. L. Lefer and H. W. Wallace, Measurements of total hydroxyl radical reactivity during CABINEX 2009 – Part 1: field measurements, *Atmos. Chem. Phys.*, 2014, **14**, 2923–2937.

21. V. Sinha, J. Williams, J. Lelieveld, T. M. Ruuskanen, M. K. Kajos, J. Patokoski, H. Hellen, H. Hakola, D. Mogensen, M. Boy, J. Rinne and M. Kulmala, OH reactivity measurements within a boreal forest: Evidence for unknown reactive emissions, *Environ. Sci. Technol.*, 2010, **44**, 6614–6620.

22. A. C. Nölscher, J. Williams, V. Sinha, T. Custer, W. Song, A. M. Johnson, R. Axinte, H. Bozem, H. Fischer, N. Pouvesle, G. Phillips, J. N. Crowley, P. Rantala, J. Rinne, M. Kulmala, D. Gonzales, J. Valverde-Canossa, A. Vogel, T. Hoffmann, H. G. Ouwersloot, J. Vilà-Guerau de Arellano, J. Lelieveld, Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010, *Atmos. Chem. Phys.*, 2012, **12**, 8257–8270.

23. Y. Nakashima, S. Kato, J. Greenberg, P. Harley, T. Karl, A. Turnipseed, E. Apel, A. Guenther, J. Smith and Y. Kajii, Total OH reactivity measurements in ambient air in a southern Rocky mountain ponderosa pine forest during BEACHON-SRM08 summer campaign, *Atmos. Environ.*, 2014, **85**, 1–8.

24. N. Zannoni, V. Gros, M. Lanza, R. Sarda, B. Bonsang, C. Kalogridis, S. Preunkert, M. Legrand, C. Jambert, C. Boissard and J. Lathiere, OH reactivity and concentrations of biogenic volatile organic compounds in a Mediterranean forest of downy oak trees, *Atmos. Chem. Phys.*, 2016, **16**, 1619–1636.

25. J. Kaiser, K. M. Skog, K. Baumann, S. B. Bertman, S. B. Brown, W. H. Brune, J. D. Crounse, J. A. de Gouw, E. S. Edgerton, P. A. Feiner, A. H. Goldstein, A. Koss, P. K. Misztal, T. B. Nguyen, K. F. Olson, J. M. St. Clair, A. P. Teng, S. Toma, P. O. Wennberg, R. J. Wild, L. Zhang and F. N. Keutsch, Speciation of OH reactivity above the canopy of an isoprene-dominated forest, *Atmos. Chem. Phys.*, 2016, **16**, 9349–9359.

26. J. Mao, X. Ren, L. Zhang, D. M. Van Duin, R. C. Cohen, J. -H. Park, A. H. Goldstein, F. Paulot, M. R. Beaver, J. D. Crounse, P. O. Wennberg, J. P. DiGangi, S. B. Henry, F. N. Keutsch, C. Park, G. W. Schade, G. M. Wolfe, J. A. Thornton and W. H. Brune, Insights into hydroxyl measurements and atmospheric oxidation in a California forest, *Atmos. Chem. Phys.*, 2012, **12**, 8009–8020.

27. J. Mao, X. Ren, W. H. Brune, J. R. Olson, J. H. Crawford, A. Fried, L. G. Huey, R. C. Cohen, B. Heikes, H. B. Singh, D. R. Blake, G. W. Sachse, G. S. Diskin, S. R. Hall and R. E.

Shetter, Airborne measurement of OH reactivity during INTEX-B, *Atmos. Chem. Phys.*, 2009, **9**, 163–173.

28. E. Y. Pfannerstill, N. Wang, A. Edtbauer, E. Bourtsoukidis, J. N. Crowley, D. Dienhart, P. G. Eger, L. Ernle, H. Fischer, B. Hottmann, J. -D. Paris, C. Stönner, I. Tadic, D. Walter, J. Lelieveld and J. Williams, Shipborne measurements of total OH reactivity around the Arabian Peninsula and its role in ozone chemistry, *Atmos. Chem. Phys.*, 2019, **19**, 11501– 11523.

29. G. Yang, J. Huo, L. Wang, Y. Wang, S. Wu, L. Yao and Q. Fu, Total OH reactivity measurements in a suburban site of Shanghai, *J. Geophys. Res. Atmos.*, 2022, **127**, e2021JD035981.

30. C. L. Heald, H. Coe, J. L. Jimenez, R. J. Weber, R. Bahreini, A. M. Middlebrook, L. M. Russell, M. Jolleys, T. -M. Fu, J. D. Allan, K. N. Bower, G. Capes, J. Crosier, W. T. Morgan, N. H. Robinson, P. I. Williams, M. J. Cubison, P. F. DeCarlo and E. J. Dunlea, Exploring the vertical profile of atmospheric organic aerosol: Comparing 17 aircraft field campaigns with a global model, *Atmos. Chem. Phys.*, 2011, **11**, 12673–12696.