Supplementary Information (SI) for Environmental Science: Atmospheres. This journal is © The Royal Society of Chemistry 2025

1 SUPPLEMENTAL INFORMATION 2 3 CyanoHABs and CAPs: assessing community-based monitoring of fine particulate matter with regional sources of pollution in rural, northeastern North Carolina 6 Haley E. Plaas^{1,*}, Colleen Karl², Rachael Cogbill³, Nicole Rosales-Garcia¹, Ashley H. Stoop⁴, Lisa L. Satterwhite⁵, Martine E. Mathieu-Campbell⁶, Jennifer Richmond-Bryant^{6,7}, Hans W. Paerl^{3,8,9}, and Douglas S. Hamilton¹ 8 9 10 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 11 27695, USA 12 ²Chowan Edenton Environmental Group, Tyner, NC 27980, USA 13 ³Department of Environmental Sciences and Engineering, UNC-Chapel Hill, Chapel Hill, NC 27599, USA 14 ⁴Albemarle Regional Health Services, Elizabeth City, NC 27909, USA 15 Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA 16 ⁶Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA ⁷Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA 8Department of Earth, Marine, and Environmental Sciences, UNC-Chapel Hill, Chapel Hill, NC 27599, USA 20 9Institute of Marine Sciences, UNC-Chapel Hill, Morehead City, NC 28557, USA 21 *Corresponding Author: Haley E. Plaas (heplaas@ncsu.edu; 2800 Faucette Dr.,1142 Jordan Hall, NC State 23 University, Raleigh, NC 27695) 24 25 26 27 28 29 30 31 October 2024 32 No. of SI Pages: 12 33 34 No. of SI Figures: 5 No. of SI Tables: 4 36 No. of SI Equations: 0 37 No. of SI Schemes: 0

Table S1. Descriptive statistics for composited (weekly) satellite data surrounding each PurpleAir sensor.

Sensor ID	Pixel Grid 'radius'	Water Surface Area	Data Completeness	Sensor ID	Pixel Grid 'radius'	Water Surface Area	Data Completeness
1806	0.62 km	25%	$99 \pm 3\%$	1318	0.62 km	0%	$100 \pm 0\%$
1806	1.2 km	40%	$96 \pm 3\%$	1318	1.2 km	4%	$98 \pm 2\%$
1806	2.4 km	66%	$98 \pm 4\%$	1318	2.4 km	8%	$98 \pm 2\%$
1680	0.62 km	50%	$96 \pm 12\%$	1344	0.62 km	0%	$100 \pm 0\%$
1680	1.2 km	47%	$97 \pm 10\%$	1344	1.2 km	0%	$100 \pm 0\%$
1680	2.4 km	43%	$98 \pm 8\%$	1344	2.4 km	3%	97 ± 1%
1378	0.62 km	56%	96 ± 12%	1358	0.62 km	0%	$100 \pm 0\%$
1378	1.2 km	51%	$97 \pm 9\%$	1358	1.2 km	0%	$100 \pm 0\%$
1378	2.4 km	38%	$97 \pm 6\%$	1358	2.4 km	0%	$100 \pm 0\%$
5822	0.62 km	50%	95 ± 12%	1562	0.62 km	0%	$100 \pm 0\%$
5822	1.2 km	47%	$97 \pm 10\%$	1562	1.2 km	0%	$100 \pm 0\%$
5822	2.4 km	37%	$98 \pm 7\%$	1562	2.4 km	0%	$100 \pm 0\%$
1334	0.62 km	39%	$97 \pm 9\%$				
1334	1.2 km	44%	$97 \pm 9\%$				
1334	2.4 km	37%	$98 \pm 7\%$				
1362	0.62 km	33%	$98 \pm 8\%$	7			
1362	1.2 km	26%	$97 \pm 5\%$	7			
1362	2.4 km	19%	$98 \pm 3\%$	7			
1348	0.62 km	22%	$96 \pm 6\%$	7			
1348	1.2 km	22%	$97 \pm 4\%$				
1348	2.4 km	17%	$99 \pm 3\%$				
5838	0.62 km	8%	$98 \pm 3\%$				
5838	1.2 km	16%	$98 \pm 3\%$				
5838	2.4 km	14%	$99 \pm 2\%$				
9875	0.62 km	22%	89 ± 8%				
9875	1.2 km	18%	93 ± 6%				
9875	2.4 km	13%	96 ± 3%				

Tables S2. Outline of the simplified generalized additive models performed to examine PM_{2.5} mass as a function of the univariate and mixed effects of AQS-measured CAPs pollutants. Each row represents a model run with the descriptor variables specified in each column. An x indicates the variable was treated as an independent smooth term in the model equation. Multiple x's per row indicate the variables were considered for their additive effects. Paired letters (a-b-c) indicate covariates treated with an interactive term. The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are provided for inter-model comparison.

Table S2.

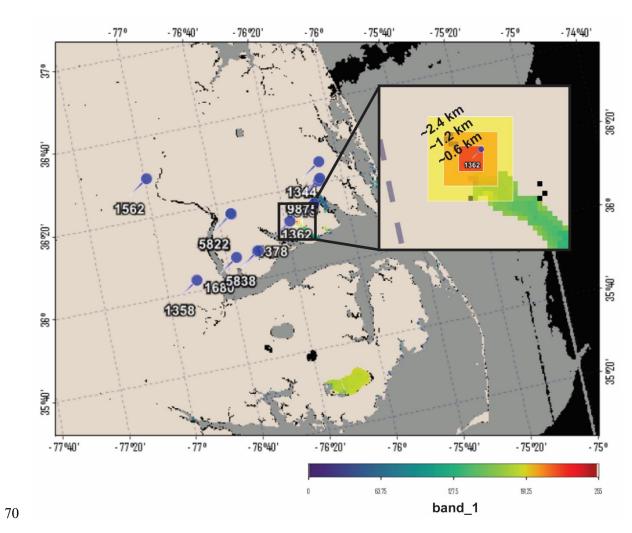
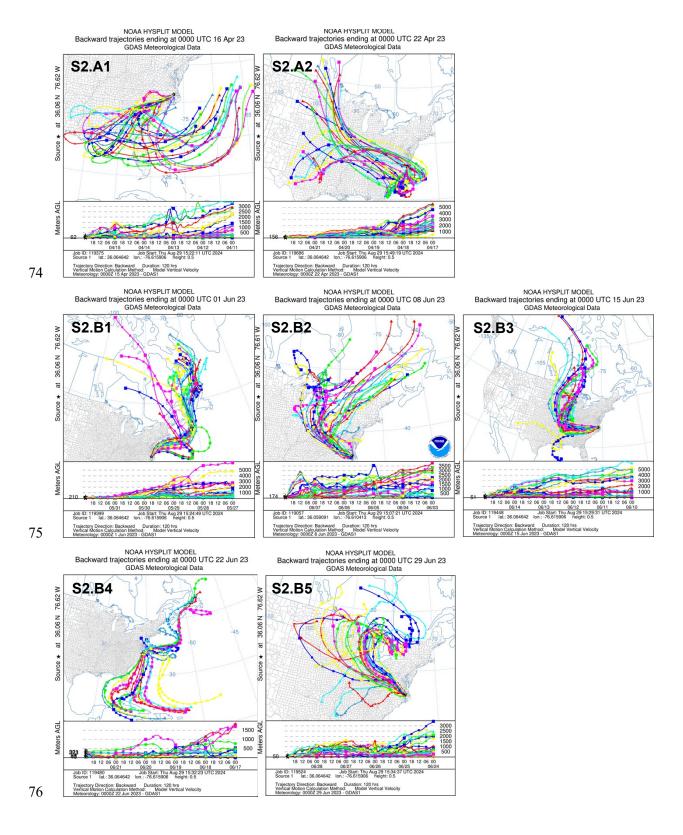
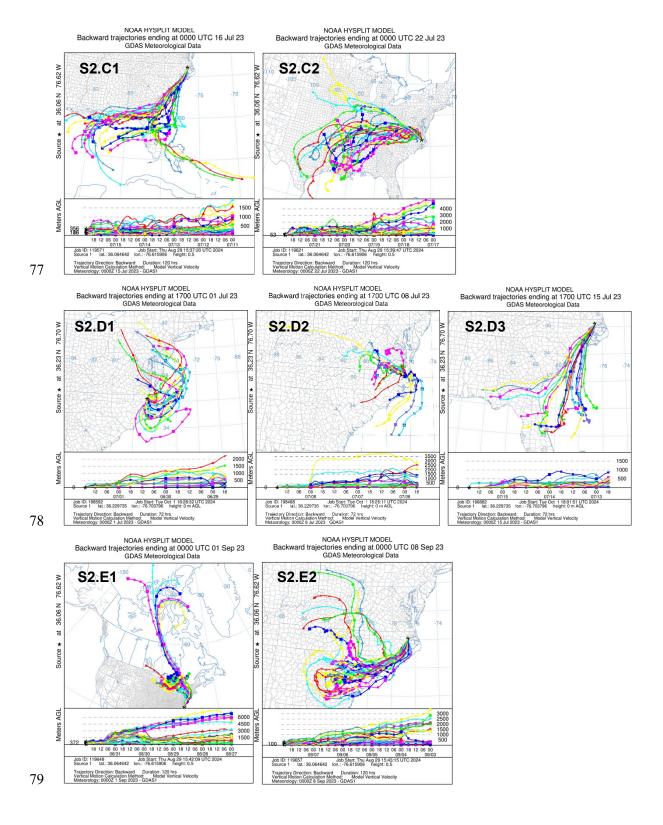
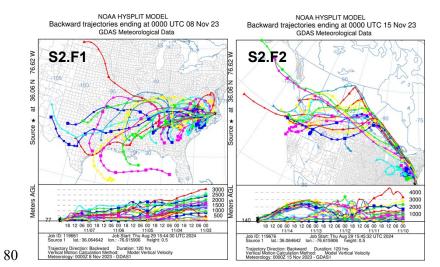
Variable	CO	O_3	PO ₄	SO ₂	NOx	AIC	BIC
PM _{2.5} ~			7	X	- 1	2808	2844
PM _{2.5} ~			х			2879	2920
PM _{2.5} ~	х					3394	3443
PM _{2.5} ~					С	2885	2930
PM _{2.5} ~		Х				2416	2453
PM _{2.5} ~		Х		Х		2266	2333
PM _{2.5} ~		Х	X			2284	2351
PM _{2.5} ~		Х			X	2322	2392
PM _{2.5} ~	Х	Х				2052	2132
PM _{2.5} ~		a			a	2282	2362
PM _{2.5} ~	b	Х		b		1772	1910
PM _{2.5} ~	Х	X		X		1854	1971
PM _{2.5} ~	Х	a		х	a	1851	2000
PM _{2.5} ~	b	Х		b	X	1741	1891
PM _{2.5} ~	Ъ	Х	X	b	Х	1580	1784

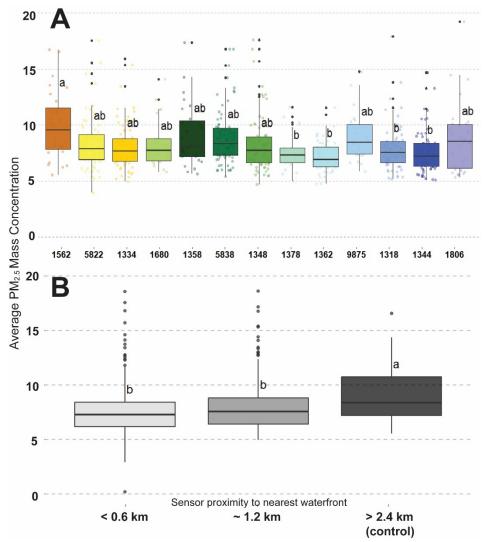
Tables S3. Outline of the simplified generalized additive models performed to examine PM_{2.5} mass as a function of the univariate and mixed effects of **meteorological conditions**. Each row represents a model run with the descriptor variables specified in each column. An x indicates the variable was treated as an independent smooth term in the model equation. Multiple x's per row indicate the variables were considered for their additive effects. Paired letters (a-b-c) indicate covariates treated with an interactive term. The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are provided for inter-model comparison.

Variable	Wind Speed	Wind Direction	Solar Radiation	Temperature	Relative Humidity	AIC	BIC
PM _{2.5} ~	X					3509	3527
$PM_{2.5} \sim$		X				3516	3541
PM _{2.5} ~			X			3422	3455
PM _{2.5} ~				X		3408	3435
PM _{2.5} ~					X	3516	3541
PM _{2.5} ~				a	a	3378	3446
PM _{2.5} ~				X	X	3400	3445
PM _{2.5} ~			ь	ь		3371	3441
PM _{2.5} ~			X	X		3389	3432
PM _{2.5} ~	С	с				3487	3556
PM _{2.5} ~	X	X				3506	3541
PM _{2.5} ~			X	a	a	3367	3511
PM _{2.5} ~			b	b	X	3366	3453
PM _{2.5} ~		X	X	a	a	3361	3457
PM _{2.5} ~	X		X	a	a	3347	3444
PM _{2.5} ~	X	X	X	a	a	3347	3452

Tables S4. Outline of the simplified generalized additive models performed to examine PM_{2.5} mass as a function of the univariate and mixed effects of satellite-derived CyanoHAB indicators. Each row represents a model run with the descriptor variables specified in each column. An x indicates the variable was treated as an independent smooth term in the model equation. Multiple x's per row indicate the variables were considered for their additive effects. Paired letters (a-b-c) indicate covariates treated with an interactive term. The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are provided for inter-model comparison.

Variable	CyanoHA B intensity 0.6 km	CyanoHA B intensity 1.2 km	CyanoHA B intensity 2.4 km	CyanoHA B Spatial Extent 0.6 km	CyanoHA B Spatial Extent 1.2 km	CyanoHA B Spatial Extent 2.4 km	AIC	BIC
$PM_{2.5} \sim$	X						1347	1361
$PM_{2.5} \sim$		X					1346	1361
$PM_{2.5} \sim$			X				1345	1360
$PM_{2.5} \sim$				X			1349	1363
$PM_{2.5} \sim$					X		1348	1362
$PM_{2.5} \sim$						X	1346	1361
PM _{2.5} ~	a			a			1347	1369
PM _{2.5} ~		b			b		1342	1364
PM _{2.5} ~			С			С	1343	1365
PM25~	d	d	d				1341	1377


Figure S1. A SeaDAS map with pixel grid overlays at each distance (0.6, 1.2, and 2.4 km from the center pixel) over which cyanobacterial harmful algal bloom cell counts and surface area was composited.

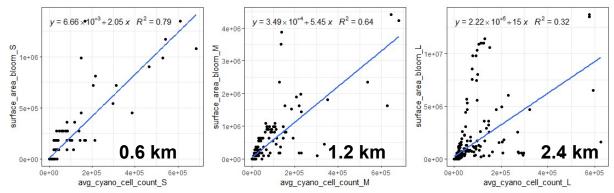


Figure S2. NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model results for the beginning and end of each week when episodic air pollution events were identified, indicated by PM_{2.5} values that exceeded seasonal averages by > 1 standard deviation. A1-2 indicates the pollution event in April, B1-5 three events in June, C1-2 July, D1-3 July in association with elevated CyanoHABs in Arrowhead Beach, E1-2 September, and F1-2 November (all in 2023).

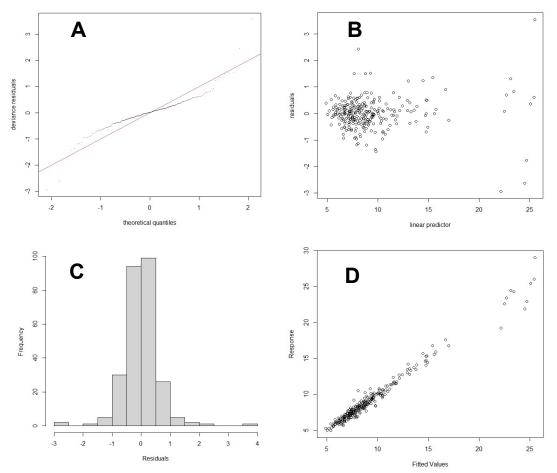

Figure S3. Average PM_{2.5} mass concentrations (US-wide correction), grouped by individual sensors (A) and proximity to the nearest HAB hotspot (B). Statistical differences between groups via Tukey's comparison of means are indicated with lowercase letters (a-b).

Figure S4. Linear regression analyses of correlation between harmful algal bloom intensity (bloom cell count) and spatial extent (bloom surface area), collected at three satellite imagery pixel grid sizes: (S) 0.6 km, (M) 1.2 km, and (L) 2.4 km extending from each sensor.

99

97 Figure S5. Generalized Additive Model diagnostic plots (A- quantile-quantile, B- residuals vs. predictor values, Chistogram of residuals, D- residuals vs. fitted values) for the model (n = 266) selected for best fit (Table 1, main text), including solar radiation, temperature*humidity, O₃, PO₄, NO_x, CO*SO₂, and HAB*wind speed as predictors. Final deviance explained was 97.5% with $R^2 = 0.963$.