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Comparison of oxidation products generated from the reaction of a-pinene
with hydroxyl radicals, chlorine atoms, and bromine atoms measured us-

ing ammonium adduct chemical ionization mass spectrometry
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Fig. S1 (a) Time series of Cl exposure (Clexp) and (b)-(e) selected Vocus signals for representative ammonium adduct ions from an a-pinene/Cl oxida-
tion experiment, showing alternating sampling between Vocus and VIA-Vocus modes (gray and white shaded regions, respectively). (b) NH} -C;oH;g
(a-pinene) (c) NH; -C4oH5CIO, (d) NH; -C3HgO and NH; -C3H5CIO (e) NH; -C44H4,0; and NH; -C;4H;30;. Signals enhanced during Vocus periods
suggest higher volatility, while signals higher during VIA-Vocus periods indicate lower volatility.
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Fig. S2 Molecular formulas, names, and proposed structures of o-pinene oxidation products present in version 3.3.1 of the Master Chemical Mecha-
nism (MCM)III and detected with the Vocus using ammonium adduct chemical ionization mass spectrometry in this work.
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Fig. S3 Van Krevelen diagram showing hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios of SOA generated from the Cl oxidation of pinene.
Data from an Aerosol Mass Spectrometer (AMS, gray squares) show bulk SOA elemental composition, while data from the VIA-Vocus identify individual
(a) non-chlorinated and (b) chlorinated molecular formulas of Factor 4 components. Colored lines show homologous series of C,H,0, and C,H,CIO,
oxidation products. Additional figure notes: 'Molecular formulas of oxidation products not included in the MCMZ2, 3Molecular formulas not previously
reported in a-pinene/Cl studies.
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Fig. S4 Van Krevelen diagram showing hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios of SOA generated from the Br oxidation of pinene.
Data from an Aerosol Mass Spectrometer (AMS, gray squares) show bulk SOA elemental composition, while data from the VIA-Vocus identify individual
(a) non-brominated and (b) brominated molecular formulas of Factor 4 components. Colored lines show homologous series of C,H,O, and C,H,BrO,
oxidation products.
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Fig. S5 Scatter plot of NH; -CyH;40 versus NH}-C;4H;50, and H™-C;qH;40 versus H*-C4yH;50, signals detected in a 2-[(1R,3R)-3-acetyl-2,2-
dimethylcyclobutyllacetaldehyde (pinonaldehyde) standard (CAS #58558-22-8, 97.2% purity, Alfa Chemistry) with Vocus PTR following reaction with
ammonium and hydronium reagent ions.
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Fig. S6 Comparison of the modeled fates of the organic peroxy radical (RO,) as a function of oxidant exposure during the OH, Cl, and Br oxidation
of a-pinene in the (a-c) absence and (d-f) presence of isomerization/autooxidation reactions, with an assumed first-order isomerization rate coefficient
(kisom = 0.1 s71). Reactions and kinetic rate coefficients used in these calculations are provided in Table
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Fig. S7 Comparison of the modeled fates of the organic peroxy radical (RO,) as a function of oxidant exposure during the OH, Cl, and Br oxidation
of a-pinene in the (a-c) absence and (d-f) presence of isomerization/autooxidation reactions, with an assumed first-order isomerization rate coefficient
(kisom = 1 s~ 1). Reactions and kinetic rate coefficients used in these calculations are provided in Table
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Fig. S8 Comparison of the modeled fates of the organic peroxy radical (RO,) as a function of oxidant exposure during the OH, Cl, and Br oxidation
of a-pinene in the (a-c) absence and (d-f) presence of isomerization/autooxidation reactions, with an assumed first-order isomerization rate coefficient
(kisom = 4 s~1). Reactions and kinetic rate coefficients used in these calculations are provided in Table



Table S1 KinSim mechanism used to model Cl and Br formation and destruction in the OFR.

Reactant 1 Reactant 2 Product1 Product2 Product3 As Eco Neo Ay Eo nyg References
cl, HV254 2l 7.26x1022 0 0 0 0 0 3
cl, HV313 2cCl 2.032x107 1 0 0 0 0 0 2
cl, HV369 2cl 8.828x10~%0 0 0 0 0 0 2
cl, o('D) cl, ocp) 2.19x10°1° 0 0 0 0 0 4
cl, o('D) clo cl 1.99x10-10 0 0 0 0 0 2
cl, ocp) clo cl 4.17x107'2 1370 0 0 0 0 0
cl, OH HOCL cl 3.6x10712 1200 0 0 0o 0 0
cl, cl Cly 1.51x10°16 0 0 0 0o 0 4
cl, Br BrCl cl 1.1x1071 0 0 0 0 0 d
cl, CICO COCl, Cl 4.18x107'2  1490.14 0 0 0 0 2

C,Cl,0,  HV254 2Cl 2CO 2.76x10" 0 0 0 0 0 10

C,Cl,0,  HV313 2Cl 2CO 8.19x1020 0 0 0 0 0 10

C,Cl,0, cl cl, Co cocl 4x10714 0 0 0 0 0 L
Br, HV369 2 Br 1.78x10° 1 0 0 0 0 0 12
Br, HV421 2 Br 6.45x101° 0 0 0 0 0 12
Br, ocp) BrO Br 5.11x1071% 989 0 0 0 0 L
Br, OH Br HOBr 2x1071 240558 0 0 0 o0 0
Br, cl Br BrCl 2.3x10710 134713 0 0 0 0 14

C,Br,0,  HV254 2 Br 2CO 1.68x10 18 0 0 0 0 0 L2

C,Br,0, Br Br, co COBr 4x10714 0 0 0 0 0 10
0,4 HV254 0, o('D) 1.03x10°"7 0 0 0 ) 1Z
oR HV313 0, o('D) 6.84x1020 0 0 0 0 0 1/
oR HV369 0, o('D) 3.59x1072 0 0 0 0 0 17
0,4 HV421 0, o('D) 6.47x1072 0 0 0 0 0 17
oR cl clo 0, 2.3x10° ! 200 0 0 0 0 6
o clo 0, ocClo 1x10°18 0 0 0 0 0 o
O4 clo 0, CloO 1.5x10717 0 0 0 0 0 :
0,4 oclo 0, Clo, 2.1x10712 4700 0 0 0 0 o
0,4 Cl,0, 0, Cloo clo 1x101° 0 0 0 0 o0 :
0,4 Br 0, BrO 1.7E-11 799.856 0 0 0 o0 0
0, BrO 20, Br 2E-17 0 0 0 0 0 1d
0, BrO, 5E-16 0 0 0 0 0 12
cl OH HCl ocp) 9.8x10° 12 2860.24 0 0 0 0 a0
cl HO, HCl 0, 1.4x10!! -270 0 0 0 0 :
cl HO, OH clo 6.3x10~'"  570.123 0 0 0 0
cl cl cl, 6.15E-34  -905.701 0 0 0 0 20
cl 0, Cloo 0 0 0 14x100¥ 0 39
cl H, HCl H 3.9x10°1 231056 0 0 0o o0
cl H,0, HCI HO, 1.1x107 1 980 0 0 0 0
cl co clco 3.4x107 1 0 0 0 0 0 el

Cclco cl co 4.1x1071%  2960.07 0 0 0 0 o
cl ClCO cl, co 2.16x107° 1670.68 0 0 0 0 L
clo HV254 cl 0oCP) 4.25x10°18 0 0 0 0 0 ad
clo HV313 cl 0oCP) 3.25x10°" 0 0 0 0 0 =
clo ocp) cl 0, 2.5x10°!1 -109.454 0 0 0 0

clo OH HCl 0, 1.2x10712 0 0 0 0 0

clo OH HO, cl 1.9x10° 1! 0 0 0 0 0

clo HO, 0, HOCI 48x107°13  700.024 0 0 0 0 i
clo HO, HCl 04 2.01x10" 1 0 0 0 0o o0 21
clo cl cl, ocp) 1.74x10712  4589.85 0 0 0 0 20
clo clo oclo cl 3.5x10°13 1370 0 0 0 o0

clo clo Cl,0, 1x107 1 0 0 205x10732 0 4



Table S1 KinSim mechanism used to model Cl and Br formation and destruction in the OFR (continued).

clo clo Cloo Cl 8.06x10~15 0 0 0 0 0

clo clo 0, 2cCl 3x10~ ! 2450 0 0 0 0 22
clo clo 0, cl, 1x10~12 1590 0 0 0 0

clo BrO oclo Br 1.6x10712 430599 0 0 0 0

clo BrO Cloo Br 29x10712  .220.111 0 0 0 0

clo BrO BrCl 0, 58x10° 1% -169.593 0 0 0 0

oclo HV254 clo ocp) 3.49x10°" 0 0 0 0 0 ad
0cClo HV313 clo ocp) 1.74x10~ 18 0 0 0 0 0 ad
ocClo HV369 clo ocp) 9.03x10~ '8 0 0 0 0 0 ad
ocClo ocp) clo 0, 2.4x10712 960 0 0 0 o0 o
oclo ocp) Clo, 3.11x107 ! 0 1 1.91E-31 0 o0 0
oclo OH 0, HOCI 1.4x10712 -600 0 0 0 0 0
oclo cl 2Clo 3.2x1071 -169.593 0 0 0 o0 ¢
oclo clo Cl,0,4 2.4x107°1 0 0 62x107%2 0 47 L
oclo Br clo BrO 2.7x107'' 130022 0 0 0 0 o
Cloo HV254 clo 0CP) 1.24x10° 17 0 0 0 0 0 26
cloo cl 0, 0 0 0 28x10710 1820 0 0
Cloo H clo OH 5.65x107!1 0 0 0 0 0 20
Cloo ocp) clo 0, 4.98x10~ 1 0 0 0 0 0 27
Cloo cl cl, 0, 2.3x10710 0 0 0 0 0 2
cloo cl 2Clo 1.2x107 ! 0 0 0 0 0 _-
Cloo Br 0, BrCl 5.15x107 14 0 0 0 0 0 28
ClL,0 HV254 clo Cl 1.84x10° 18 0 0 0 0 0 22130
Cl,0 HV313 cl, cl 3.94x10°" 0 0 0 0 0 29.30
Cl,0 HV369 cl, Cl 5.43x107%! 0 0 0 0 0 22030
Cl,0 H clo HCl 4.1x1071 0 0 0 0 0 2l
Cl,0 ocp) 2Clo 2.7x107 1 530 0 0 0 0 o
Cl,0 OH HOCI clo 5.1x107 12 -100 0 0 0 0 2
Cl,0 cl cl, clo 6.20x10°!" 129901 0 0 0 0 o
ClL,0 clo cl, Cloo 4.32x1071 0 0 0 0 0 2/
Cl,0 clo cl, Cl 0, 1.08x10713 0 0 0 0 0 2
Cl,0 Br clo BrCl 2.1x10°1 470291 0 0 0 0 0
Cl,0, HV254 Cloo cl 6.01x10~ 18 0 0 0 0 0 30033
Cl,0, HV313 Cloo cl 3.81x10°" 0 0 0 0 0 3033
Cl,0, HV369 Cloo cl 4.76x10720 0 0 0 0 0 3033
Cl,0, 2 Clo 3.7x1077  7690.64 0 0 0o 0 L
Cl,0, OH HOCI Cloo 6x10713 -670 0 0 0 0 id
Cl,0, cl cl, Cloo 7.6x10711 -65 0 0 0 0
Cl,0, Br Cloo BrCl 59x107!12  169.593 0 0 0 0
Cl,0,4 HV254 1.443x10° 1 0 0 0 0 0 ad
Cl,04 HV313 1.86x10°18 0 0 0 0 0 ad
Cl,0,4 clo 0cClo 1.4x10719  3810.44 0 0 0 0 L
BrO HV369 Br oCp) 1.01x10° '8 0 0 0 0 0 e
BrO ocp) BrO, 5x107! 0 0 0 0 0 34
BrO 0CP) Br 0, 1.9x1071! -230 0 0 0o 0 0
BrO OH 0, HBr 1x10712 0 0 0 0 0 0
BrO OH 1.8x10°!!  -250.18 0 0 0 0 o
BrO HO, 0, HOBr 6.19x10712  500.361 0 0 0 o0 G6
BrO BrO Br BrO, 5.25x107!1  449.844 0 0 0 0 iz
BrO BrO 0, 2 Br 2.7x10712 0 0 0 0 0

BrO BrO Br, 0, 2.5x107° 1 0 0 0 0 0

BrO, HV421 BrO ocp) 5.70x10~ '8 0 0 0 0 0 2z
BrO, ocp) BrO 0, 4.25x10712 0 0 0 0 0 34



Table S1 KinSim mechanism used to model Cl and Br formation and destruction in the OFR (continued).

BrO, Br 5x10~! 0 0 0 0 0 34
BrO, clo 1.5x10713 0 0 0 0 0 h
BrO, 0Clo 6x10714 0 0 0 0 0 i
HCl H H, Cl 1.32x10°" 171037 0 0 0 0 20
HCl o(ip) cl OH 1x10710 0 0 0 0 0 52
HCl o('D) clo H 3.6x10°1 0 0 0 0 0 i
HCl 0oe3p) cl OH 1x107 1! 3300 0 0 0 0 23
HCl OH cl H,0 1.72x10712 229.733 0 0 0 0 o
HOCI HV254 OH Cl 1.46x10~19 0 0 0 0 0 40
HOCI HV313 OH Cl 5.84x10~20 0 0 0 0 0 2y
HOCI HV369 OH Cl 9.19x10~2 0 0 0 0 0 2
HOCI H HCl OH 6.71x10~13 0 0 0 0 0 zal
HOCI 0o(3P) clo OH 1.7x10713 0 0 0 0 0 o
HOCI OH clo H,0 3.01x10712 500 0 0 0 0 2
HOCI cl Clo HCl 3.4x10712 130 0 0 0 0 23
HOCI cl OH cl, 3.4x10°13 0 0 0 0 0 el
HBr H Br H, 8.32x107!2  81.7898 1.05 0 0 0 42
HBr o('D) 1.5x10710 0 0 0 0 0 23
HBr o(C3p) Br OH 5.8x10712 1500 0 0 0 0 23
HBr OH Br H,0 6.7x10712  -15516 0 0 0 0 o
HBr cl Br HCl 7.8x10712 0 0 0 0 0 20
HBr Clo Br HOCl 5.60x10~13 0 0 0 0 0 43
HBr BrO Br HOBr 6.19x10°15 0 0 0 0 0 43
HOBr HV254 OH Br 6.19x10~20 0 0 0 0 0 22
HOBr HV369 OH Br 9.32x10°20 0 0 0 0 0 22
HOBr HV421 OH Br 9.67x10~ 2 0 0 0 0 0 22
HOBr 0o(3p) BrO OH 1.2x10710 430.6 0 0 0 0 o
HOBr OH 5x10~13 0 0 0 0 0 44
HOBr cl BrcCl OH 8x10~ 1 0 0 0 0 0 44
BrCl HV254 Br Cl 3.24x10~20 0 0 0 0 0 12
BrCl HV313 Br cl 2.51x10°20 0 0 0 0 0 12
BrCl HV369 Br Cl 3.96x10°19 0 0 0 0 0 12
BrCl HV421 Br Cl 1.78x10~1° 0 0 0 0 0 12
BrCl 0o(3p) BrO Cl 2.09x10~1 0 0 0 0 0 40
BrCl OH 1.5x10712 0 0 0 0 0 44
BrCl cl Cl, Br 1.45x107! 0 0 0 0 0 40
BrCl Br Br, Cl 3.32x10° 13 0 0 0 0 0 —~




Table S2 KinSim mechanism used to model peroxy radical RO, formation and destruction in the OFR.

Reactant 1 Reactant 2 Product 1 Product 2 Product 3 As Ee n. Ag Eg ng References
APINENE OH RO, H,0 1.2x10°'"" 44383 0 0 0 O 4/
APINENE cl RO, HCI 4.7x10710 0 0 0 0 O 48
APINENE Br RO, HBr 2.23x10! 0 0 0 0 O =2
RO, RO, 5om 0,0.1,1,0r 4 0 0 0 0 O 2001
RO, RO, 2RO 0, 2.55x10713 0 0 0 0 O L
RO, RO, ROH R(O) 0, 1.09x10°13 0 0 0 0 O .
RO, RO, 1om 2RO 0, 2.55x10713 0 0 0 0 O L
RO, RO, 1om ROH R(0) 0, 1.09x10°13 0 0 0 0 0 1
RO, HO, ROOH 2.66x10713 1300 0 0 0 O L
RO, 5o HO, ROOH 2.66x10713 1300 0 0 0 O L
RO, OH ROH 0, 1x10710 0 0 0 0 O 2s
RO, 1om OH ROH 0, 1x10°10 0 0 0 0 O 22
RO 0, PINAL HO, 1x10° 0 0 0 0 O L
RO, cl RO clo 1.6x10~10 0 0 0 0 O e
RO, 1om cl RO clo 1.6x10710 0 0 0 0 O L3
RO, clo RO clo, 49x10712 329565 0 O O O 14
RO, 5om clo RO clo, 49x10712 329565 0 0 0O O 18
RO, clo ROCI 0, 2.6x10713 250803 0 0 0 O 18
RO, 1om clo ROCI 0, 2.6x1071% 259803 0 0 0 O 18
RO 0, CHLOROPINAL  HO, 3.3x10° 0 0 0 0 O
RO 0, PINAL Cl 6.7x10° 0 0 0 0 0
RO, Br RO BrO 1.6x10~10 0 0 0 0 O
RO, 5om Br RO BrO 1.6x10710 0 0 0 0 0
RO, BrO RO2H HOBr 4.6x10°1% 79745 0 0 0 O 22
RO, 1om BrO RO2H HOBr 46x10713  .79745 0 0 0 O =
RO 0, BROMOPINAL HO, 6.6x10° 0 0 0 0 O
RO 0, PINAL Br 3.4x10° 0 0 0 0 O
ROOH OH RO, 1.83x10° ! 0 0 0 O L
ROOH cl RO, 1.83x10°10 0 0 0 O
ROOH Br RO, 2.23x10°13 0 0 0 O
ROH OH RO, 1.49x10° 1 0 0 0 O L
ROH cl RO, 1.49x10°10 0 0 0 O
ROH Br RO, 2.23x10713 0 0 0 O
R(0) OH RO, 1.49x10~ 11 0 0 0 O L
R(0) cl RO, 1.49x10°10 0 0 0 O
R(0) Br RO, 2.23x10°13 0 0 0 O
PINAL OH RO, 45x10712 600192 0 0O O O 24
PINAL cl RO, 3.86x1071° 0 0 0 0 O =
CHLOROPINAL cl RO, 3.86x1071° 0 0 0 0 O
PINAL Br RO, 3.9x10712 0 0 0 0 O 2
BROMOPINAL Br RO, 3.9x107'2 0 0 0 0 O
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