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Fig. S1 (a) Time series of Cl exposure (Clexp) and (b)-(e) selected Vocus signals for representative ammonium adduct ions from an α-pinene/Cl oxida-
tion experiment, showing alternating sampling between Vocus and VIA-Vocus modes (gray and white shaded regions, respectively). (b) NH+

4 ·C10H16
(α-pinene) (c) NH+

4 ·C10H15ClO2 (d) NH+
4 ·C3H6O and NH+

4 ·C3H5ClO (e) NH+
4 ·C10H14O7 and NH+

4 ·C10H13O7. Signals enhanced during Vocus periods
suggest higher volatility, while signals higher during VIA-Vocus periods indicate lower volatility.
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Fig. S2 Molecular formulas, names, and proposed structures of α-pinene oxidation products present in version 3.3.1 of the Master Chemical Mecha-
nism (MCM) 1 and detected with the Vocus using ammonium adduct chemical ionization mass spectrometry in this work.

Fig. S3 Van Krevelen diagram showing hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios of SOA generated from the Cl oxidation of pinene.
Data from an Aerosol Mass Spectrometer (AMS, gray squares) show bulk SOA elemental composition, while data from the VIA-Vocus identify individual
(a) non-chlorinated and (b) chlorinated molecular formulas of Factor 4 components. Colored lines show homologous series of CxHyOz and CxHyClOz

oxidation products. Additional figure notes: 1Molecular formulas of oxidation products not included in the MCM 2, 3Molecular formulas not previously
reported in α-pinene/Cl studies.
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Fig. S4 Van Krevelen diagram showing hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios of SOA generated from the Br oxidation of pinene.
Data from an Aerosol Mass Spectrometer (AMS, gray squares) show bulk SOA elemental composition, while data from the VIA-Vocus identify individual
(a) non-brominated and (b) brominated molecular formulas of Factor 4 components. Colored lines show homologous series of CxHyOz and CxHyBrOz
oxidation products.

Fig. S5 Scatter plot of NH+
4 ·C10H14O versus NH+

4 ·C10H16O2 and H+·C10H14O versus H+·C10H16O2 signals detected in a 2-[(1R,3R)-3-acetyl-2,2-
dimethylcyclobutyl]acetaldehyde (pinonaldehyde) standard (CAS #58558-22-8, 97.2% purity, Alfa Chemistry) with Vocus PTR following reaction with
ammonium and hydronium reagent ions.
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Fig. S6 Comparison of the modeled fates of the organic peroxy radical (RO2) as a function of oxidant exposure during the OH, Cl, and Br oxidation
of α-pinene in the (a-c) absence and (d-f) presence of isomerization/autooxidation reactions, with an assumed first-order isomerization rate coefficient
(kisom = 0.1 s−1). Reactions and kinetic rate coefficients used in these calculations are provided in Table S2.

Fig. S7 Comparison of the modeled fates of the organic peroxy radical (RO2) as a function of oxidant exposure during the OH, Cl, and Br oxidation
of α-pinene in the (a-c) absence and (d-f) presence of isomerization/autooxidation reactions, with an assumed first-order isomerization rate coefficient
(kisom = 1 s−1). Reactions and kinetic rate coefficients used in these calculations are provided in Table S2.
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Fig. S8 Comparison of the modeled fates of the organic peroxy radical (RO2) as a function of oxidant exposure during the OH, Cl, and Br oxidation
of α-pinene in the (a-c) absence and (d-f) presence of isomerization/autooxidation reactions, with an assumed first-order isomerization rate coefficient
(kisom = 4 s−1). Reactions and kinetic rate coefficients used in these calculations are provided in Table S2.
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Table S1 KinSim mechanism used to model Cl and Br formation and destruction in the OFR.

Reactant 1 Reactant 2 Product 1 Product 2 Product 3 A∞ E∞ n∞ A0 E0 n0 References
Cl2 HV254 2 Cl 7.26×10−22 0 0 0 0 0 3

Cl2 HV313 2 Cl 2.032×10−19 0 0 0 0 0 3

Cl2 HV369 2 Cl 8.828×10−20 0 0 0 0 0 3

Cl2 O(1D) Cl2 O(3P) 2.19×10−10 0 0 0 0 0 4

Cl2 O(1D) ClO Cl 1.99×10−10 0 0 0 0 0 5

Cl2 O(3P) ClO Cl 4.17×10−12 1370 0 0 0 0 6

Cl2 OH HOCl Cl 3.6×10−12 1200 0 0 0 0 6

Cl2 Cl Cl3 1.51×10−16 0 0 0 0 0 7

Cl2 Br BrCl Cl 1.1×10−15 0 0 0 0 0 8

Cl2 ClCO COCl2 Cl 4.18×10−12 1490.14 0 0 0 0 9

C2Cl2O2 HV254 2 Cl 2 CO 2.76×10−19 0 0 0 0 0 10

C2Cl2O2 HV313 2 Cl 2 CO 8.19×10−20 0 0 0 0 0 10

C2Cl2O2 Cl Cl2 CO COCl 4×10−14 0 0 0 0 0 11

Br2 HV369 2 Br 1.78×10−19 0 0 0 0 0 12

Br2 HV421 2 Br 6.45×10−19 0 0 0 0 0 12

Br2 O(3P) BrO Br 5.11×10−13 -989 0 0 0 0 13

Br2 OH Br HOBr 2×10−11 240.558 0 0 0 0 6

Br2 Cl Br BrCl 2.3×10−10 134.713 0 0 0 0 14

C2Br2O2 HV254 2 Br 2 CO 1.68×10−18 0 0 0 0 0 15

C2Br2O2 Br Br2 CO COBr 4×10−14 0 0 0 0 0 16

O3 HV254 O2 O(1D) 1.03×10−17 0 0 0 0 0 17

O3 HV313 O2 O(1D) 6.84×10−20 0 0 0 0 0 17

O3 HV369 O2 O(1D) 3.59×10−23 0 0 0 0 0 17

O3 HV421 O2 O(1D) 6.47×10−23 0 0 0 0 0 17

O3 Cl ClO O2 2.3×10−11 200 0 0 0 0 6

O3 ClO O2 OClO 1×10−18 0 0 0 0 0 6

O3 ClO O2 ClOO 1.5×10−17 0 0 0 0 0 6

O3 OClO O2 ClO3 2.1×10−12 4700 0 0 0 0 6

O3 Cl2O2 O2 ClOO ClO 1×10−19 0 0 0 0 0 6

O3 Br O2 BrO 1.7E-11 799.856 0 0 0 0 6

O3 BrO 2 O2 Br 2E-17 0 0 0 0 0 18

O3 BrO2 5E-16 0 0 0 0 0 19

Cl OH HCl O(3P) 9.8×10−12 2860.24 0 0 0 0 20

Cl HO2 HCl O2 1.4×10−11 -270 0 0 0 0 6

Cl HO2 OH ClO 6.3×10−11 570.123 0 0 0 0 6

Cl Cl Cl2 6.15E-34 -905.701 0 0 0 0 20

Cl O2 ClOO 0 0 0 1.4×10−33 0 3.9 6

Cl H2 HCl H 3.9×10−11 2310.56 0 0 0 0 6

Cl H2O2 HCl HO2 1.1×10−11 980 0 0 0 0 6

Cl CO ClCO 3.4×10−14 0 0 0 0 0 21

ClCO Cl CO 4.1×10−10 2960.07 0 0 0 0 6

Cl ClCO Cl2 CO 2.16×10−9 1670.68 0 0 0 0 20

ClO HV254 Cl O(3P) 4.25×10−18 0 0 0 0 0 22

ClO HV313 Cl O(3P) 3.25×10−19 0 0 0 0 0 22

ClO O(3P) Cl O2 2.5×10−11 -109.454 0 0 0 0 6

ClO OH HCl O2 1.2×10−12 0 0 0 0 0 6

ClO OH HO2 Cl 1.9×10−11 0 0 0 0 0 6

ClO HO2 O2 HOCl 4.8×10−13 700.024 0 0 0 0 23

ClO HO2 HCl O3 2.01×10−14 0 0 0 0 0 24

ClO Cl Cl2 O(3P) 1.74×10−12 4589.85 0 0 0 0 20

ClO ClO OClO Cl 3.5×10−13 1370 0 0 0 0 6

ClO ClO Cl2O2 1×10−11 0 0 2.05×10−32 0 4 6
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Table S1 KinSim mechanism used to model Cl and Br formation and destruction in the OFR (continued).

ClO ClO ClOO Cl 8.06×10−15 0 0 0 0 0 6

ClO ClO O2 2 Cl 3×10−11 2450 0 0 0 0 25

ClO ClO O2 Cl2 1×10−12 1590 0 0 0 0 6

ClO BrO OClO Br 1.6×10−12 -430.599 0 0 0 0 6

ClO BrO ClOO Br 2.9×10−12 -220.111 0 0 0 0 6

ClO BrO BrCl O2 5.8×10−13 -169.593 0 0 0 0 6

OClO HV254 ClO O(3P) 3.49×10−19 0 0 0 0 0 22

OClO HV313 ClO O(3P) 1.74×10−18 0 0 0 0 0 22

OClO HV369 ClO O(3P) 9.03×10−18 0 0 0 0 0 22

OClO O(3P) ClO O2 2.4×10−12 960 0 0 0 0 6

OClO O(3P) ClO3 3.11×10−11 0 1 1.91E-31 0 0 6

OClO OH O2 HOCl 1.4×10−12 -600 0 0 0 0 6

OClO Cl 2 ClO 3.2×10−11 -169.593 0 0 0 0 6

OClO ClO Cl2O3 2.4×10−11 0 0 6.2×10−32 0 4.7 6

OClO Br ClO BrO 2.7×10−11 1300.22 0 0 0 0 6

ClOO HV254 ClO O(3P) 1.24×10−17 0 0 0 0 0 26

ClOO Cl O2 0 0 0 2.8×10−10 1820 0 6

ClOO H ClO OH 5.65×10−11 0 0 0 0 0 20

ClOO O(3P) ClO O2 4.98×10−11 0 0 0 0 0 27

ClOO Cl Cl2 O2 2.3×10−10 0 0 0 0 0 23

ClOO Cl 2 ClO 1.2×10−11 0 0 0 0 0 23

ClOO Br O2 BrCl 5.15×10−14 0 0 0 0 0 28

Cl2O HV254 ClO Cl 1.84×10−18 0 0 0 0 0 29,30

Cl2O HV313 Cl2 Cl 3.94×10−19 0 0 0 0 0 29,30

Cl2O HV369 Cl2 Cl 5.43×10−21 0 0 0 0 0 29,30

Cl2O H ClO HCl 4.1×10−11 0 0 0 0 0 31

Cl2O O(3P) 2 ClO 2.7×10−11 530 0 0 0 0 6

Cl2O OH HOCl ClO 5.1×10−12 -100 0 0 0 0 32

Cl2O Cl Cl2 ClO 6.20×10−11 129.901 0 0 0 0 6

Cl2O ClO Cl2 ClOO 4.32×10−16 0 0 0 0 0 27

Cl2O ClO Cl2 Cl O2 1.08×10−15 0 0 0 0 0 27

Cl2O Br ClO BrCl 2.1×10−11 470.291 0 0 0 0 6

Cl2O2 HV254 ClOO Cl 6.01×10−18 0 0 0 0 0 30,33

Cl2O2 HV313 ClOO Cl 3.81×10−19 0 0 0 0 0 30,33

Cl2O2 HV369 ClOO Cl 4.76×10−20 0 0 0 0 0 30,33

Cl2O2 2 ClO 3.7×10−7 7690.64 0 0 0 0 6

Cl2O2 OH HOCl ClOO 6×10−13 -670 0 0 0 0 32

Cl2O2 Cl Cl2 ClOO 7.6×10−11 -65 0 0 0 0 6

Cl2O2 Br ClOO BrCl 5.9×10−12 169.593 0 0 0 0 6

Cl2O3 HV254 1.443×10−17 0 0 0 0 0 22

Cl2O3 HV313 1.86×10−18 0 0 0 0 0 22

Cl2O3 ClO OClO 1.4×10−10 3810.44 0 0 0 0 6

BrO HV369 Br O(3P) 1.01×10−18 0 0 0 0 0 34

BrO O(3P) BrO2 5×10−11 0 0 0 0 0 34

BrO O(3P) Br O2 1.9×10−11 -230 0 0 0 0 6

BrO OH O2 HBr 1×10−12 0 0 0 0 0 35

BrO OH 1.8×10−11 -250.18 0 0 0 0 6

BrO HO2 O2 HOBr 6.19×10−12 500.361 0 0 0 0 36

BrO BrO Br BrO2 5.25×10−11 449.844 0 0 0 0 37

BrO BrO O2 2 Br 2.7×10−12 0 0 0 0 0 6

BrO BrO Br2 O2 2.5×10−14 0 0 0 0 0 6

BrO2 HV421 BrO O(3P) 5.70×10−18 0 0 0 0 0 22

BrO2 O(3P) BrO O2 4.25×10−12 0 0 0 0 0 34
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Table S1 KinSim mechanism used to model Cl and Br formation and destruction in the OFR (continued).

BrO2 Br 5×10−11 0 0 0 0 0 34

BrO2 ClO 1.5×10−13 0 0 0 0 0 38

BrO2 OClO 6×10−14 0 0 0 0 0 38

HCl H H2 Cl 1.32×10−11 1710.37 0 0 0 0 20

HCl O(1D) Cl OH 1×10−10 0 0 0 0 0 39

HCl O(1D) ClO H 3.6×10−11 0 0 0 0 0 39

HCl O(3P) Cl OH 1×10−11 3300 0 0 0 0 23

HCl OH Cl H2O 1.72×10−12 229.733 0 0 0 0 6

HOCl HV254 OH Cl 1.46×10−19 0 0 0 0 0 40

HOCl HV313 OH Cl 5.84×10−20 0 0 0 0 0 40

HOCl HV369 OH Cl 9.19×10−21 0 0 0 0 0 40

HOCl H HCl OH 6.71×10−13 0 0 0 0 0 41

HOCl O(3P) ClO OH 1.7×10−13 0 0 0 0 0 6

HOCl OH ClO H2O 3.01×10−12 500 0 0 0 0 23

HOCl Cl ClO HCl 3.4×10−12 130 0 0 0 0 23

HOCl Cl OH Cl2 3.4×10−13 0 0 0 0 0 41

HBr H Br H2 8.32×10−12 81.7898 1.05 0 0 0 42

HBr O(1D) 1.5×10−10 0 0 0 0 0 23

HBr O(3P) Br OH 5.8×10−12 1500 0 0 0 0 23

HBr OH Br H2O 6.7×10−12 -155.16 0 0 0 0 6

HBr Cl Br HCl 7.8×10−12 0 0 0 0 0 20

HBr ClO Br HOCl 5.60×10−15 0 0 0 0 0 43

HBr BrO Br HOBr 6.19×10−15 0 0 0 0 0 43

HOBr HV254 OH Br 6.19×10−20 0 0 0 0 0 22

HOBr HV369 OH Br 9.32×10−20 0 0 0 0 0 22

HOBr HV421 OH Br 9.67×10−21 0 0 0 0 0 22

HOBr O(3P) BrO OH 1.2×10−10 430.6 0 0 0 0 6

HOBr OH 5×10−13 0 0 0 0 0 44

HOBr Cl BrCl OH 8×10−11 0 0 0 0 0 44

BrCl HV254 Br Cl 3.24×10−20 0 0 0 0 0 12

BrCl HV313 Br Cl 2.51×10−20 0 0 0 0 0 12

BrCl HV369 Br Cl 3.96×10−19 0 0 0 0 0 12

BrCl HV421 Br Cl 1.78×10−19 0 0 0 0 0 12

BrCl O(3P) BrO Cl 2.09×10−11 0 0 0 0 0 45

BrCl OH 1.5×10−12 0 0 0 0 0 44

BrCl Cl Cl2 Br 1.45×10−11 0 0 0 0 0 46

BrCl Br Br2 Cl 3.32×10−15 0 0 0 0 0 20
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Table S2 KinSim mechanism used to model peroxy radical RO2 formation and destruction in the OFR.

Reactant 1 Reactant 2 Product 1 Product 2 Product 3 A∞ E∞ n∞ A0 E0 n0 References
APINENE OH RO2 H2O 1.2×10−11 -443.83 0 0 0 0 47

APINENE Cl RO2 HCl 4.7×10−10 0 0 0 0 0 48

APINENE Br RO2 HBr 2.23×10−11 0 0 0 0 0 49

RO2 RO2,Isom 0, 0.1, 1, or 4 0 0 0 0 0 50,51

RO2 RO2 2RO O2 2.55×10−13 0 0 0 0 0 1

RO2 RO2 ROH R(O) O2 1.09×10−13 0 0 0 0 0 1

RO2 RO2,Isom 2RO O2 2.55×10−13 0 0 0 0 0 1

RO2 RO2,Isom ROH R(O) O2 1.09×10−13 0 0 0 0 0 1

RO2 HO2 ROOH 2.66×10−13 -1300 0 0 0 0 1

RO2,Isom HO2 ROOH 2.66×10−13 -1300 0 0 0 0 1

RO2 OH ROH O2 1×10−10 0 0 0 0 0 52

RO2,Isom OH ROH O2 1×10−10 0 0 0 0 0 52

RO O2 PINAL HO2 1×106 0 0 0 0 0 1

RO2 Cl RO ClO 1.6×10−10 0 0 0 0 0 23

RO2,Isom Cl RO ClO 1.6×10−10 0 0 0 0 0 23

RO2 ClO RO ClO2 4.9×10−12 329.565 0 0 0 0 18

RO2,Isom ClO RO ClO2 4.9×10−12 329.565 0 0 0 0 18

RO2 ClO ROCl O2 2.6×10−13 -259.803 0 0 0 0 18

RO2,Isom ClO ROCl O2 2.6×10−13 -259.803 0 0 0 0 18

RO O2 CHLOROPINAL HO2 3.3×105 0 0 0 0 0
RO O2 PINAL Cl 6.7×105 0 0 0 0 0
RO2 Br RO BrO 1.6×10−10 0 0 0 0 0

RO2,Isom Br RO BrO 1.6×10−10 0 0 0 0 0
RO2 BrO RO2H HOBr 4.6×10−13 -797.45 0 0 0 0 53

RO2,Isom BrO RO2H HOBr 4.6×10−13 -797.45 0 0 0 0 53

RO O2 BROMOPINAL HO2 6.6×105 0 0 0 0 0
RO O2 PINAL Br 3.4×105 0 0 0 0 0

ROOH OH RO2 1.83×10−11 0 0 0 0 1

ROOH Cl RO2 1.83×10−10 0 0 0 0
ROOH Br RO2 2.23×10−13 0 0 0 0
ROH OH RO2 1.49×10−11 0 0 0 0 1

ROH Cl RO2 1.49×10−10 0 0 0 0
ROH Br RO2 2.23×10−13 0 0 0 0
R(O) OH RO2 1.49×10−11 0 0 0 0 1

R(O) Cl RO2 1.49×10−10 0 0 0 0
R(O) Br RO2 2.23×10−13 0 0 0 0
PINAL OH RO2 4.5×10−12 -600.192 0 0 0 0 54

PINAL Cl RO2 3.86×10−10 0 0 0 0 0 55

CHLOROPINAL Cl RO2 3.86×10−10 0 0 0 0 0
PINAL Br RO2 3.9×10−12 0 0 0 0 0 56

BROMOPINAL Br RO2 3.9×10−12 0 0 0 0 0
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