Supplementary Information

Operando quantification of diffusion-induced stresses in O3-type NaNi_{1/3}Fe_{1/3}Mn_{1/3}O₂ sodium-ion battery electrode during electrochemical cycling

Amit Chanda¹, Daniel P. Abraham², Stephen E. Trask², Siva P.V. Nadimpalli^{1*}

¹Department of Mechanical Engineering, Michigan State University, 428 S. Shaw Lane, East Lansing, MI, 48824, USA

²Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA

*Corresponding author. Email: sivan@msu.edu

S1. Electrode porosity calculation

The electrode porosity is estimated as follows:

 $Electrode\ Porosity\ (\%) = 1 - \left(\frac{Apparent\ coating\ density}{Theoretical\ compact\ coating\ density}\right)$

The *theoretical* compact coating density is calculated based on the rule of mixtures, considering the bulk density (ρ) and weight fraction of each composite component, as follows:

Theoretical compact coating density =
$$\frac{1}{\frac{W_{NFM}}{\rho_{NFM}} + \frac{W_c}{\rho_c} + \frac{W_{binder}}{\rho_{binder}}}$$

where W_i is the weight fraction of the *i*th component; NFM is NaNi_{1/3}Fe_{1/3}Mn_{1/3}O₂ and *c* stands for carbons (Timcal C-45, Tuball SWCNT). The densities of the materials are as reported by the manufacturer and assume no porosity within the particles.

The *apparent* coating density is calculated by the ratio *weight/geometric volume* using several electrode samples from which the average weight and thickness are determined. Naturally, the current collector properties are subtracted in the calculation. The electrode thickness is measured using a digital micrometer.

 Table S1. NFM111 electrode composition and cell chemistry.

NFM111 electrode (single-sided; calendered)

95 wt% NaNi_{1/3}Fe_{1/3}Mn_{1/3}O₂ (Gelon) 2.95 wt% Timcal C-45 + 0.05 wt.% Tuball SWCNT 2 wt% Solvay 5130 PVDF Binder

Al Foil Thickness	20 µm
Total Electrode Thickness	156 μm
Coating Thickness	136 µm
Porosity	34.4 %
Total Coating Density	2.75 g/cm ³
Total Coating Loading	37.4 mg/cm ²
NFM111 Loading	35.5 mg/cm ²

Separator: Glass Fiber (Whatman, Grade GF/F)Electrolyte: 1M NaClO₄ in PC + 5 wt% FECNa-metal: Purchased as cubes (Sigma-Aldrich)

Figures

Fig. S1. Schematic shows that the typical stress state in a thin film coating on a substrate is inplane equibiaxial stress (σ), because the expansion/contraction of the film is constrained by the substrate. The out of plane stress, i.e., stress in z direction is zero as the film is free to expand/contract in that direction.¹

Figure S2. Discharge (sodiation) capacity of NFM111 electrode vs. cycle number at the indicated currents. In addition to the NFM111, the coin cell contained a Na-metal counter electrode, glass fiber separator and an electrolyte with 1M NaClO₄ salt in PC+ 5 wt% FEC solvent.

Figure S3. Steps of the beaker cell assembly: (a) Na foil with embedded Cu-wire placed in a Teflon beaker, (b) Aluminum current collector of the NFM111 electrode bonded to Si-wafer, (c) NFM111 electrode stacked on top of Na foil with a separator in between to prevent physical contact, (d) covering the beaker with a stainless-steel lid comprising a glass window. (e) shows an assembled beaker cell, placed inside a glovebox, with electrical connections for the electrochemical cycling and optical arrangements for the substrate-curvature measurement.

Figure S4. (a) Stress evolution in the NFM111 electrode due to wetting by the electrolyte, prior to any electrochemical cycling, (b) Potential and stress evolution in the NFM111 electrode during 3 galvanostatic cycles conducted in a beaker cell, with a current of 0.2 mA/cm².

Figure S5. Changes to the Na-foil counter electrode after 3 cycles between 2.0 - 4.1 V vs. Na. Note that the high capacity high (~5 mAh cm⁻²) transferred during these cycles aggravates degradation of the Na-metal.

Figure S6. Potential and stress evolution in the NFM111 electrode during 4th galvanostatic cycle (after reassembling the cell with fresh Na foil), with a current of 0.2 mA/cm².

Figure S7. (a) Potential and stress of NFM111 electrode as a function of areal capacity showing different stages of stress during the 2^{nd} cycle between 2- 4.1 V. (b) has the corresponding differential capacity (dQ/dV) plot.

Figure S8. Comparison of stress data (from this study) with unit cell volume change from the research literature (Jiang et al., *Carbon Neutralization*, 2024²) observed during Na⁺ extraction from NFM electrode.

References

(1) Freund, L. B.; Suresh, S. Thin Film Materials: Stress, Defect Formation and Surface

Evolution. Cambridge Univ. Press 2003.

 Jiang, C.; Wang, Y.; Xin, Y.; Ding, X.; Liu, S.; Pang, Y.; Chen, B.; Wang, Y.; Gao, L. L.; Wu, F.; Gao, H. Toward High Stability of O3-type NaNi1/3Fe1/3Mn1/3O2 Cathode Material with Zirconium Substitution for Advanced Sodium-Ion Batteries. *Carbon Neutralization* 2024, *3*, 233–244. https://doi.org/10.1002/cnl2.115.