Supplementary Information

Approaching Convergence in the Electrochemical Mechanism of Aqueous Zn–MnO₂ Sustainable Batteries

Balaji Sambandam*, Vinod Mathew, Muhammad H. Alfaruqi, Sungjin Kim and Jaekook Kim*

Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, South Korea

*Correspondence: <u>balajisam@chonnam.ac.kr</u> (BS) jaekook@chonnam.ac.kr (JK, Lead contact)

Figure S1. Number of publications of the $Zn-MnO_2$ aqueous batteries in the past one decade (Source: Scopus search on "Aqueous $Zn-MnO_2$ batteries". Total number of publications, in the past one decade, are found to be 574, excluding 49 preprints available in the literature.

Battery structure ^[ref.] Period:2012-2022	Electrochemical mechanism (Type of analysis)	Year
α -MnO ₂ Zn ¹	$\overline{Zn^{2+}}$ (de)intercalation (non-operando)	2012
α -MnO ₂ Zn ²	Zn ²⁺ intercalation (non-operando)	2014
γ -MnO ₂ Zn ³	Zn^{2+} (de)intercalation (operando)	2015
α -MnO ₂ Zn ⁴	H ⁺ conversion reaction (non-operando)	2016
ϵ -MnO ₂ Zn ⁵	Co-insertion of H ⁺ and Zn ²⁺ ions (non-operando)	2017
layered-MnO ₂ Zn ⁶	Zn ²⁺ intercalation (operando)	2018
δ -MnO ₂ Zn ⁷	Intercalation-conversion reaction (non-operando)	2019
α -MnO ₂ Zn ⁸	Intercalation-conversion reaction (non-operando)	2019
α , δ -MnO ₂ Zn ⁹	MnO_2 - Mn^{2+} deposition–dissolution with trace of Zn^{2+}/H^+ intercalation (non-operando)	2020
α -MnO ₂ Zn ¹⁰	H^+ -insertion with trace of Zn^{2+} insertion (operando)	2020
$\alpha\text{-}MnO_2 Zn^{11}$	MnO ₂ -Mn ²⁺ deposition-dissolution without intercalation (non-operando)	2021
EMD (47%) δ - MnO ₂ Zn ¹²	Multi-phase formations; deposition-dissolution, insertion (operando)	2021
$\begin{array}{l} Zn_4 SO_4 (OH)_6.n H_2 O \\ \ Zn^{13} \end{array}$	Deposition–dissolution of parasitic phase of $Zn_4SO_4(OH)_6$. nH ₂ O without intercalation (operando)	2022
$\alpha\text{-}MnO_2 Zn^{14}$	Exclusive H ⁺ intercalation (non-operando)	2022
$\alpha\text{-}MnO_2 \ Zn^{15}$	MnO ₂ -Mn ²⁺ deposition–dissolution with ZnMn ₃ O ₇ layer formation during charge reaction (operando)	2022
γ-MnO ₂ Zn ¹⁶ (CMD/EMD)	MnO ₂ -Mn ²⁺ electrodeposition–dissolution with reversible deposition-dissolution of ZHS, respectively, on discharge regions I and II, with with almost identical first and remaining electrochemical charge-discharge traces	2022
Period:2023-2024*	-	
β -MnO ₂ Zn ¹⁷	Dissolution–deposition reaction with (ir)reversible Zn-Mn complex formation during charge (operando)	2023
$\alpha\text{-}MnO_2 Zn^{18}$	Multi-stage Mn dissolution–conversion (via. $Zn_4SO_4(OH)_6$. nH ₂ O assisted Mn dissolution–deposition with Zn-ion inserted layered Zn_xMnO_2 formation during	2023
$\alpha\text{-}MnO_2 \ Zn^{19}$	Exclusive MnO_2 - Mn^{2+} deposition–dissolution (non-operando)	2024
δ- $MnO_2 Zn^{20}$	Formation of irreversible Zn_xMnO_2 (formed before charge- discharge) H ⁺ intercalation and Mn^{2+} dissolution	2024

Table 1. Various selected reported electrochemical mechanisms in Zn–MnO₂ AZIBs through operando and non-operando techniques.

(operando)

* Not including reportes of known (explored) mechanisms

Simulation Method

The possible dissolution phenomenon of Mn atoms was investigated using ab initio molecular dynamics (AIMD) simulations implemented in the Vienna Ab Initio Simulation Package (VASP) software. The calculations employed the projector-augmented wave (PAW) method and the Perdew-Burke-Ernzerhof (PBE) functional within the framework of generalized gradient approximation (GGA)²²⁻²⁶. The plane-wave energy cutoff was set to 500 eV. The Brillouin zone was sampled using the Γ -point scheme, and electronic smearing was handled using the Gaussian smearing method with a smearing width 0.1 eV. The AIMD simulations were performed using the Nose-Hoover thermostat at an elevated constant temperature of 800 K (MnOOH) and 1200 K (ZnMn₂O₄ and MnO) throughout the simulation^{27, 28}. The dynamics were propagated using the velocity Verlet integrator with a time step of 1 fs, and the simulations were run for 1000 steps, corresponding to 1 ps of simulation time. About 72 hours of computing time was used for each calculation on Volta Supercomping facilities at Next Generation Batteries Lab, Chonnam National University. The vacuum region was set to exceed 12 Å. The van der Walls dispersion interactions DFT-D3 method with Becke-Johnson damping function were employed in the simulation²⁹.

References

- 1. C. Xu, B. Li, H. Du and F. Kang, Angew. Chem. Int. Ed., 2012, 51, 933-935.
- B. Lee, C. S. Yoon, H. R. Lee, K. Y. Chung, B. W. Cho and S. H. Oh, *Sci. Rep.*, 2014, 4, 6066.
- 3. M. H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J. P. Baboo, S. H. Choi and J. Kim, *Chem. Mater.*, 2015, **27**, 3609-3620.
- 4. H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. T. Mueller and J. Liu, *Nat. Energy*, 2016, **1**, 16039.
- 5. W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu and C. Wang, *J. Am. Chem. Soc.*, 2017, **139**, 9775-9778.
- 6. M. H. Alfaruqi, S. Islam, D. Y. Putro, V. Mathew, S. Kim, J. Jo, S. Kim, Y.-K. Sun, K. Kim and J. Kim, *Electrochim. Acta*, 2018, **276**, 1-11.

- 7. Y. Li, S. Wang, J. R. Salvador, J. Wu, B. Liu, W. Yang, J. Yang, W. Zhang, J. Liu and J. Yang, *Chem. Mater.*, 2019, **31**, 2036-2047.
- 8. Y. Huang, J. Mou, W. Liu, X. Wang, L. Dong, F. Kang and C. Xu, *Nano-Micro Lett.*, 2019, **11**, 49.
- 9. X. Guo, J. Zhou, C. Bai, X. Li, G. Fang and S. Liang, *Mater. Today Energy*, 2020, 16, 100396.
- 10. X. Gao, H. Wu, W. Li, Y. Tian, Y. Zhang, H. Wu, L. Yang, G. Zou, H. Hou and X. Ji, *Small*, 2020, **16**, 1905842.
- H. Moon, K.-H. Ha, Y. Park, J. Lee, M.-S. Kwon, J. Lim, M.-H. Lee, D.-H. Kim, J. H. Choi, J.-H. Choi and K. T. Lee, *Adv. Sci.*, 2021, 8, 2003714.
- 12. I. A. Rodríguez-Pérez, H. J. Chang, M. Fayette, B. M. Sivakumar, D. Choi, X. Li and D. Reed, *J. Mater. Chem. A*, 2021, **9**, 20766-20775.
- 13. H. Chen, C. Dai, F. Xiao, Q. Yang, S. Cai, M. Xu, H. J. Fan and S.-J. Bao, *Adv. Mater.*, 2022, n/a, 2109092.
- Y. Yuan, R. Sharpe, K. He, C. Li, M. T. Saray, T. Liu, W. Yao, M. Cheng, H. Jin, S. Wang, K. Amine, R. Shahbazian-Yassar, M. S. Islam and J. Lu, *Nat. Sustain.*, 2022, 5, 890-898.
- 15. D. Wu, L. M. Housel, S. T. King, Z. R. Mansley, N. Sadique, Y. Zhu, L. Ma, S. N. Ehrlich, H. Zhong, E. S. Takeuchi, A. C. Marschilok, D. C. Bock, L. Wang and K. J. Takeuchi, *J. Am. Chem. Soc.*, 2022, **144**, 23405-23420.
- I. Aguilar, P. Lemaire, N. Ayouni, E. Bendadesse, A. V. Morozov, O. Sel, V. Balland, B. Limoges, A. M. Abakumov, E. Raymundo-Piñero, A. Slodczyk, A. Canizarès, D. Larcher and J.-M. Tarascon, *Energy Storage Mater.*, 2022, 53, 238-253.
- V. R. Kankanallu, X. Zheng, D. Leschev, N. Zmich, C. Clark, C.-H. Lin, H. Zhong, S. Ghose, A. M. Kiss, D. Nykypanchuk, E. Stavitski, E. S. Takeuchi, A. C. Marschilok, K. J. Takeuchi, J. Bai, M. Ge and Y.-c. K. Chen-Wiegart, *Energy Environ. Sci.*, 2023, 16, 2464-2482.
- D. Wu, S. T. King, N. Sadique, L. Ma, S. N. Ehrlich, S. Ghose, J. Bai, H. Zhong, S. Yan, D. C. Bock, E. S. Takeuchi, A. C. Marschilok, L. M. Housel, L. Wang and K. J. Takeuchi, *J. Mater. Chem. A*, 2023, 11, 16279-16292.
- 19. Y. Li, Y. Li, Q. Liu, Y. Liu, T. Wang, M. Cui, Y. Ding, H. Li and G. Yu, *Angew. Chem. Int. Ed.*, **n**/**a**, e202318444.
- 20. S. Cui, D. Zhang and Y. Gan, Adv. Energy Mater., n/a, 2302655.
- 21. L. Wu, Z. Li, Y. Xiang, W. Dong, X. Qi, Z. Ling, Y. Xu, H. Wu, M. D. Levi, N. Shpigel and X. Zhang, *Small*, **n**/**a**, 2404583.
- 22. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 23. G. Kresse and J. Hafner, *Phys. Rev. B*, 1994, **49**, 14251-14269.
- 24. G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, 47, 558-561.
- 25. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 26. G. Kresse and J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15-50.
- G. Zhou, X. Sun, Q.-H. Li, X. Wang, J.-N. Zhang, W. Yang, X. Yu, R. Xiao and H. Li, J. Phys. Chem. Lett., 2020, 11, 3051-3057.
- 28. X. Sun, R. Xiao, X. Yu and H. Li, *Langmuir*, 2021, **37**, 5252-5259.
- 29. S. Grimme, S. Ehrlich and L. Goerigk, J. Comp. Chem., 2011, 32, 1456-1465.