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Figure S1. (A) FTIR spectra and (B) XRD patterns of bismuth subgallate hydrate at various annealing 

temperatures.



Figure S2. Particle size distribution of Bi nanoparticles in the Bi@CFs sample derived from TEM 

measurements. 



Figure S3. HRTEM image of the Bi@CFs sample.



Figure S4. Selected area electron diffraction (SAED) pattern of the Bi@CFs sample.



Figure S5. XRD pattern of the Bi@CFs sample.



Figure S6. Element mapping of Bi and C in the Bi@CFs composite.



Figure S7. TGA curve of the basic bismuth subgallate hydrate.



Figure S8. Raman spectrum of the Bi@CFs sample.



Figure S9. In situ XRD contour mapping of the Bi@CFs electrode during the first cycle.



Figure S10. In situ XRD patterns of the Bi@CFs electrode during the second cycle: (A) corresponding 

diffraction profiles and (B) contour mapping.



Figure S11. (A) Ex situ FTIR spectra of Bi@CFs electrode in the carbonate-based electrolyte discharge 

and charge stages. (B) Ex situ FTIR spectra of pure Bi electrode in the DME-based electrolyte discharge 

and charge stages.



Figure S12. CV curves of the Bi@CFs electrode at a scan rate of 0.2 mV s-1 in the potential range of 

0.1-1.5 V (-20 °C).



Figure S13. GCD profiles of the Bi@CFs electrode after various cycles under -50 °C.



Figure S14. (A) Electrochemical cycling stability and (B) rate performance of the pure Bi electrode at -

50 °C.



Figure S15. Electrochemical cycling stability of Bi@CFs electrode in carbonate-based electrolyte at -

50 °C.



Figure S16. The viscosity and ionic conductivity of the DME-based electrolyte at -50 °C.



Figure S17. GCD profiles of the Bi@CFs electrode at 1 A g-1 under various temperatures.



Figure S18. GCD profiles of Bi@CFs electrode at different current densities under -50 °C.



Table S1. The comparison of electrochemical performance between the Bi@CFs anode and previously 

reported anodes for SIBs and PIBs at various temperatures.1-13

Samples
Voltage 

range (V)

Capacity and Cycle 

stability

(mAh g-1/cycles)

Temperature

(°C)
Refs.

Bi@CFs 0.1~1.5 345.35@1 A g-1/400 -50 This work

Bi@C 0.01~1.5 246@0.1 A g-1/10 -40
Carbon Energy. 2024, 6, 

e531.

HC 0.01~2
128@0.026 A g-

1/400
-40

Angew. Chem. Int. Ed. 

2023, 62, e202307122.

CNTs 0.01~3.0

230.8@0.1 C/1

167.8@0.1 C/1

76.7@0.1 C/1

-20

-40

-50

Chem. Eng. J. 2022, 429, 

132272.

NCG-EE-K 0.1~3 85@0.05 A g-1/150 -40
Adv. Funct. Mater. 2023, 

33, 2209775.

TiO2-rGO 0.01~2.5
120@5 C/1500

100@5 C/1500

-20

-40

J. Alloys and Compd. 2020, 

835, 155413.

Na2Ti6O13@C 0.1~2 25@0.1 C/6 -40
Batteries & Supercaps. 

2023, 6, e202200549.

NaV1.25Ti0.75O4 0.01~2.3 95@0.02 A g-1/2 -20
Adv. Energy Mater. 2018, 8, 

1801162.

NPT/C-CNTs 1.5~3.0 113@0.5 C/1 -20 RSC Adv. 2016, 6, 70277.

KPTCDA 0~2 17@0.0558 A g-1/1 -20
Angew. Chem. Int. Ed. 

2024, 63, e202315624.

NaTi2(PO4)3@C 1.5~3 102.35@0.2C/200 -20
J．Power Sources. 2020, 

477, 228735.

Bi@3DCF 0~1.5 200@1 A g-1/500 -20
Mater. Today Energy. 2021, 

20, 100627.

FeSe2/rGO 0.5~3.0 216.7@1 A g-1/200 -40
Chem. Eng. J. 2021, 422, 

130054.

Graphite 0~2.5 73@0.1 A g-1/25 -40
Angew. Chem. Int. Ed. 

2021, 60, 23858-23862.



Figure S19. The diagrams of migration path on the surface of pure Bi electrode.



Figure S20. In situ EIS measurements of the Bi@CFs electrode during (A) discharge and (B) charge 

processes at 0.3 A g-1 under -50 °C.



Figure S21. Ex-suit EIS measurements of (A) the pure Bi and (B) Bi@CFs electrodes after five cycles.



Table S2. Comparison of charge transfer impedance values between this work and previously reported 

literature under low-temperatures.14-17

Samples Cycles Rct (Ω) Temperature (°C) Ref.

LBL-modified 

graphite
Initial 66.7 -20

ACS Appl. Energy Mater. 

2023, 6, 12371-12378

Mo,S-LTO/Mx Initial > 500 -20
Mater. Today Chem. 2022, 26, 

101145

SH1600 Initial 167.5 -20
J. Energy Storage. 2024, 102, 

114056

Gen 2

BN/FEC

BN/EC+FEC

After 3 

cycles

130.5

97.67

101.3

-20
ACS Appl. Mater. Interfaces. 

2022, 14, 11910-11918

Bi@CFs
After 2 

cycles
< 30 -50 This work



Figure S22. The contact angles of DME-based electrolyte on (A) Bi@CFs electrode and (B) pure Bi 

electrode. (C) Contact angles of EC/DEC-based electrolyte on the Bi@CFs electrode.



Figure S23. (A) Galvanostatic intermittent titration (GITT) profile of the Bi@CFs electrode at 50 mA g-1 

under -50 °C, and (B) corresponding calculation of the K-ion diffusion coefficient.

The value of Dk
+ was calculated using the simplified Fick′s second law, as represented by equation (5):18

                           (1)
𝐷=

4
𝜋𝜏
(
𝑚𝐵𝑉𝑀
𝑀𝐵𝐴

)2(
Δ𝐸𝑠
∆𝐸𝜏

)2

Where τ is the pulse duration, mB, MB, and VM correspond to the mass, molar mass, and molar volume 

of electrode, A is difined as the interfacial area between electrode and electrolyte.19 



Figure S24. SEM images of the Bi@CFs electrodes after (A) 2nd, (B) 5th, (C) 50th and (D) 200th cycles.



Figure S25. GCD profiles of the Bi@CFs/AC hybrid capacitors with various anode-to-cathode mass 

ratios: (A) 1:1 and (B) 1:3.
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