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Figure S1. (A) FTIR spectra and (B) XRD patterns of bismuth subgallate hydrate at various annealing

temperatures.
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Figure S2. Particle size distribution of Bi nanoparticles in the Bi@CFs sample derived from TEM

measurements.



Figure S3. HRTEM image of the Bi@CFs sample.



Figure S4. Selected area electron diffraction (SAED) pattern of the Bi@CFs sample.
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Figure S5. XRD pattern of the Bi@CFs sample.



Figure S6. Element mapping of Bi and C in the Bi@CFs composite.
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Figure S7. TGA curve of the basic bismuth subgallate hydrate.




— BI@CFs
5
W
>
o
|
o
<
800 1200 1600 2000

Raman shift (cm™)

Figure S8. Raman spectrum of the Bi@CFs sample.
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Figure S9. In situ XRD contour mapping of the Bi@CFs electrode during the first cycle.



1.0

0.92

0.83

0.75

D-0.10

0.66

PN =

0.58

Intensity (a.u.)

0.49

O B LI LI LI LI LI I
BREBUEBUUEERNERENe s

.‘ HW'TI.'”\ W
il u‘i‘l‘ﬂ' U

e e s e s i N G i

0.41

e g e

| 22

0.32

15 20 25 30 35 15 20 25 30 35 40
2 Theta (degree) 2 Theat (degree)

B
o

Figure S10. In situ XRD patterns of the Bi@CFs electrode during the second cycle: (A) corresponding

diffraction profiles and (B) contour mapping.
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Figure S11. (A) Ex situ FTIR spectra of Bi@CFs electrode in the carbonate-based electrolyte discharge

and charge stages. (B) Ex situ FTIR spectra of pure Bi electrode in the DME-based electrolyte discharge

and charge stages.
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Figure S12. CV curves of the Bi@CFs electrode at a scan rate of 0.2 mV s in the potential range of

0.1-1.5 V (-20 °C).



— 50th -50 °C

N N
o (&)
I 1

Voltage (V vs.K*/K)
o
o

0 100 200 300 400
Specific capacity (mAh g™')

Figure $13. GCD profiles of the Bi@CFs electrode after various cycles under -50 °C.
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Figure $14. (A) Electrochemical cycling stability and (B) rate performance of the pure Bi electrode at -

50°C.
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Figure $15. Electrochemical cycling stability of Bi@CFs electrode in carbonate-based electrolyte at -

50°C.
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Figure $16. The viscosity and ionic conductivity of the DME-based electrolyte at -50 °C.
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Figure S17. GCD profiles of the Bi@CFs electrode at 1 A g-! under various temperatures.
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Figure $18. GCD profiles of Bi@CFs electrode at different current densities under -50 °C.



Table S1. The comparison of electrochemical performance between the Bi@CFs anode and previously

reported anodes for SIBs and PIBs at various temperatures.!-13

Capacity and Cycle

Voltage Temperature
Samples stability Refs.
range (V) (°C)
(mAh g/cycles)
Bi@CFs 0.1~1.5 345.35@1 A g'/400 -50 This work
Carbon Energy. 2024, 6,
Bi@C 0.01~1.5 246@0.1 A g'/10 -40
e531.
128@0.026 A g Angew. Chem. Int. Ed.
HC 0.01~2 -40
/400 2023, 62, e202307122.
230.8@0.1 C/1 -20
Chem. Eng. J. 2022, 429,
CNTs 0.01~3.0 167.8@0.1 C/1 -40
132272.
76.7@0.1 C/1 -50
Adv. Funct. Mater. 2023,
NCG-EE-K 0.1~3 85@0.05 A g'/150 -40
33, 2209775.
120@5 C/1500 -20 J. Alloys and Compd. 2020,
TiO,-rGO 0.01~2.5
100@5 C/1500 -40 835, 155413.
Batteries & Supercaps.
N32T|6013@C 0.1~2 25@01 Cl6 -40
2023, 6, €202200549.
Adv. Energy Mater. 2018, 8,
NaV25Tig 7504 0.01~2.3 95@0.02 A g'/2 -20
1801162.
NPT/C-CNTs 1.5~3.0 113@0.5 C/1 -20 RSC Adv. 2016, 6, 70277.
Angew. Chem. Int. Ed.
KPTCDA 0~2 17@0.0558 A g''/1 -20
2024, 63, e202315624.
J. Power Sources. 2020,
NaTiy(PO,);@C 1.5~3 102.35@0.2C/200 -20
477, 228735.
Mater. Today Energy. 2021,
Bi@3DCF 0~1.5 200@1 A g'/500 -20
20, 100627.
Chem. Eng. J. 2021, 422,
FeSe,/rGO 0.5~3.0 216.7@1 A g'/200 -40
130054.
Angew. Chem. Int. Ed.
Graphite 0~2.5 73@0.1 Ag'/25 -40

2021, 60, 23858-23862.




Figure S19. The diagrams of migration path on the surface of pure Bi electrode.



Figure S$20. In situ EIS measurements of the Bi@CFs electrode during (A) discharge and (B) charge

processes at 0.3 A g-' under -50 °C.
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Figure S21. Ex-suit EIS measurements of (A) the pure Bi and (B) Bi@CFs electrodes after five cycles.



Table S2. Comparison of charge transfer impedance values between this work and previously reported

literature under low-temperatures. 417

Samples Cycles R (Q) Temperature (°C) Ref.
LBL-modified ACS Appl. Energy Mater.
Initial 66.7 -20
graphite 2023, 6, 12371-12378
Mater. Today Chem. 2022, 26,
Mo,S-LTO/Mx Initial > 500 -20
101145
J. Energy Storage. 2024, 102,
SH1600 Initial 167.5 -20
114056
Gen 2 130.5
After 3 ACS Appl. Mater. Interfaces.
BN/FEC 97.67 -20
cycles 2022, 14, 11910-11918
BN/EC+FEC 101.3
After 2
Bi@CFs <30 -50 This work

cycles
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Figure S22. The contact angles of DME-based electrolyte on (A) Bi@CFs electrode and (B) pure Bi

electrode. (C) Contact angles of EC/DEC-based electrolyte on the Bi@CFs electrode.
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Figure $23. (A) Galvanostatic intermittent titration (GITT) profile of the Bi@CFs electrode at 50 mA g

under -50 °C, and (B) corresponding calculation of the K-ion diffusion coefficient.

The value of D4* was calculated using the simplified Fick's second law, as represented by equation (5):'®

4 mpVy . AE
— () (—)?
T MBA AET (1)

Where ris the pulse duration, mg, Mg, and V), correspond to the mass, molar mass, and molar volume

of electrode, A is difined as the interfacial area between electrode and electrolyte.'®



Figure S24. SEM images of the Bi@CFs electrodes after (A) 2", (B) 5t, (C) 50t and (D) 200t cycles.



Manode * Meathode = 1:1 Mnode- Meathode = 1:3

0.1Ag"

i
o
=
o

——0.1Ag"
—0.2

.W
o
s
o

N
o
N

N
T

-
o
(o]

o
Voltage (V vs. K'/K) m

Voltage (V vs. K'/K) >

500 1000 1500 2000 0 1000 2000 3000 4000
Time (s) Time (s)

O

Figure S25. GCD profiles of the Bi@CFs/AC hybrid capacitors with various anode-to-cathode mass

ratios: (A) 1:1 and (B) 1:3.
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