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Figure S1. Equivalent circuit models used for fitting for (a) the contact resistance'- (Figure S2),
(b) negative symmetric cells>>, and (¢) positive symmetric cells, full coin cells, and pouch cells*
3. Ryolution 18 solution resistance, Reonact 1S cOntact resistance, R is charge transfer resistance, CPE
is constant phase element, W is Warburg circuit element.
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Figure S2. Area specific Nyquist plots of blocking (a) LiMng¢Fe( 4PO,4 cathode ((+/+)/2) and (b)
graphite anode ((-/-)/2) symmetric cells at different temperatures. The cells were fabricated using
electrodes punched from fresh LiMn, ¢Fe 4PO4/graphite pouch cells. Experimental data are shown
as solid line and fitted data are shown as cross symbols, using the equivalent circuit in Figure Sla.
The average contact resistance (Reonet) Of LiMng¢Fep4PO, cathode and graphite anode were
determined to be 4.53 Q cm? and 14.05 Q cm?, respectively.



Iy
in

T %= Graphite (a) 9 (C)
-~ ¥=Cu =
s
é/ E 1.0+
z =
- w
Iz E4
§ H 0.5
= v ]

I 1 | i 3

. . . . . . 0.0t j | L l.
10 20 30 40 50 60 70 80 S . 0 100 200 300 400
20 (deg.) Specefic Capacity (mAh/g)

Figure S3. Characterizations of graphite anode material. (a) XRD pattern and (b) SEM image of
pristine graphite electrode. (¢) Voltage vs. specific capacity curve of graphite/Li half cell cycled
at C/20 and 25 °C.
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Figure S4. Ex-situ EXAFS spectra of (a) Fe K-edge and (b) Mn K-edge in LiMng¢Feq4PO4
electrode at different voltages.
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Figure S5. (a) LiMng¢Feo4PO,4/graphite pouch cell, (b) voltage vs. capacity curves of

LiMn ¢Fe( 4PO, cathode, graphite anode, and LiMn, ¢Fe, 4PO,4/graphite pouch cell, displaying N/P

ratio of 1.23, (¢) first-cycle Coulombic efficiency of LiMng ¢Fe, 4PO,/graphite pouch cells during
formation.




Figure S6. SEM images of (a-c) LiMn, ¢Fe( 4PO4 cathode and (d-f) graphite anode after long-term
cycling with different electrolytes including (a, d) CTRL, (b, e) CTRL + 2% VC, and (c, f) CTRL
+ 2% VC + 1% DTD electrolytes.
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Figure S7. (a) Increase rate of R per cycle for LiMn,¢Fey4POy4/graphite pouch cell,
LiMn, ¢Fey 4PO,4 cathode ((+/+)/2) and (b) graphite anode ((-/-)/2) symmetric cells. (b) The Fe L3-
edge has two peaks, and the intensity ratio between the right peak and the left peak is plotted as a
function of the labeled conditions. (¢) The Mn L3-edge has two peaks, and the intensity ratio
between the right peak and the left peak is plotted as a function of the labeled conditions.
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Figure S8. XPS data for graphite electrodes extracted from fresh, formed, and cycled pouch cells.
Formed cells were formed to 4.2 V; cycled cells were cycled between 3.0 V and 4.2 V; all formed
and cycled cells were disassembled at 3.9 V and contained CTRL, CTRL+2VC, or
CTRL+2VCI1DTD electrolyte. Each row contains data from one electrode sample. F 1s, O 1s, and
C 1s spectra are shown. The y-axis scales are equal for spectra of the same type (columns).
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Components are labeled based on binding energy and literature assignments (Table S12).
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Figure S9. (a) Expanded unit cell of LiMn,¢Fey4PO4 to remove partial atom occupations. Four
different types of (010) lattice surfaces are shown: (b) Li-top, (¢) Mn/Fe-top, (d) Li-O-top, and (¢)
Mn/Fe-O-top.



Table S1. The best fit parameters for the ex situ LiMn, ¢Fe( 4PO, pristine
Eo=3.71 +/-2.93, Sp>=1.053 +/- 0.288, R-factor = 0.0038

Sphere [Bond N R, A sigma, 10 A
Ist Fe-O 2 2.01435 2.53

Ist Fe-O 1 2.11335 1.66

Ist Fe-O 1 2.21067 0.74

2nd Fe-P 1 2.83298 6.24

2nd Fe-P 1 3.20688 203.2

2nd Fe-P 3 3.24557 7.96

3rd Fe-TM 4 3.83663 26.72

3rd Fe-TM 2 4.66033 9.65




Table S2. The best fit parameters for the ex situ LiMn, ¢Feq 4PO4 3.00V vs. Li*/Li
Eo=12.42 +/-3.42, S¢* = 1.431 +/- 1.399, R-factor = 0.0029

Sphere [Bond N R, A sigma, 10 A
Ist Fe-O 2 2.00738 7.95

Ist Fe-O 1 2.10730 7.09

Ist Fe-O 1 2.20434 71.27

2nd Fe-P 1 2.82486 941

2nd Fe-P 1 3.19770 36.12

2nd Fe-P 3 3.23627 17.61

3rd Fe-TM 4 3.82564 19.95

3rd Fe-TM 2 4.64698 15.27




Table S3. The best fit parameters for the ex situ LiMn, ¢Feq 4PO4 3.65V vs. Li*/Li
Eo=4.45 +/- 2.55, Sp?> = 2.578 +/- 0.829, R-factor = 0.0056

Sphere [Bond N R, A sigma, 10 A
Ist Fe-O 2 2.01126 8.78

Ist Fe-O 1 2.11099 52.46

Ist Fe-O 1 2.20820 232.88

2nd Fe-P 1 2.82981 15.02

2nd Fe-P 1 3.20330 19.13

2nd Fe-P 3 3.24194 2431

3rd Fe-TM 4 3.83234 30.45

3rd Fe-TM 2 4.65512 18.85




Table S4. The best fit parameters for the ex situ LiMn, ¢Fe 4,PO4 4.20V vs. Li*/Li
Eo=4.43 +/- 3.28, Sy? = 1.754+/- 0.646, R-factor = 0.0175

Sphere [Bond N R, A sigma, 10 A
Ist Fe-O 2 1.93860 4.88

Ist Fe-O 1 2.08908 3.01

Ist Fe-O 1 2.18529 37.39

2nd Fe-P 1 2.80045 9.60

2nd Fe-P 1 3.17006 5.39

2nd Fe-P 3 3.20830 32.20

3rd Fe-TM 4 3.79257 17.46

3rd Fe-TM 2 4.60681 14.00




Table S5. The best fit parameters for the ex situ LiMn, ¢Fe( 4PO, pristine
Eo=3.71 +/-2.93, Sp>=1.053 +/- 0.288, R-factor = 0.0038

Sphere [Bond N R, A sigma, 10 A
Ist Mn-O 2 2.01435 2.53

Ist Mn-O 1 2.11335 1.66

Ist Mn-O 1 2.21067 0.74

2nd Mn-P 1 2.83298 6.24

2nd Mn-P 1 3.20688 203.2

2nd Mn-P 3 3.24557 7.96

3rd Mn-TM 4 3.83663 26.72

3rd Mn-TM 2 4.66033 9.65




Table S6. The best fit parameters for the ex situ LiMn, ¢Feq 4PO4 3.00V vs. Li*/Li
Eo=12.42 +/-3.42, S¢* = 1.431 +/- 1.399, R-factor = 0.0029

Sphere [Bond N R, A sigma, 10 A
Ist Mn-O 2 2.00738 7.95

Ist Mn-O 1 2.10730 7.09

Ist Mn-O 1 2.20434 71.27

2nd Mn-P 1 2.82486 941

2nd Mn-P 1 3.19770 36.12

2nd Mn-P 3 3.23627 17.61

3rd Mn-TM 4 3.82564 19.95

3rd Mn-TM 2 4.64698 15.27




Table S7. The best fit parameters for the ex situ LiMn, ¢Fe 4PO4 3.65V vs. Li*/Li
Eo=4.45 +/- 2.55, Sp?> = 2.578 +/- 0.829, R-factor = 0.0056

Sphere [Bond N R, A sigma, 10 A
Ist Mn-O 2 2.01126 8.78

Ist Mn-O 1 2.11099 52.46

Ist Mn-O 1 2.20820 232.88

2nd Mn-P 1 2.82981 15.02

2nd Mn-P 1 3.20330 19.13

2nd Mn-P 3 3.24194 2431

3rd Mn-TM 4 3.83234 30.45

3rd Mn-TM 2 4.65512 18.85




Table S8. The best fit parameters for the ex situ LiMn, ¢Fe 4PO4 4.20V vs. Li*/Li
Ey = 8.56 +/- 2.45, Sy? = 2.044+/- 0.631, R-factor = 0.0069

Sphere [Bond N R, A sigma, 10 A
Ist Mn-O 2 1.96259 34.80
Ist Mn-O 1 2.14113 83.12
Ist Mn-O 1 2.23973 25.79
2nd Mn-P 1 2.87022 31.28
2nd Mn-P 1 3.24904 40.43
2nd Mn-P 3 3.28824 56.24
3rd Mn-TM 4 3.88707 39.39
3rd Mn-TM 2 4.72159 33.64




Table S9. Summary of R, values for LiMng ¢Fe( 4PO4/LiMng ¢Fe( 4PO4 and graphite/graphite
symmetric cells, as well as LiMn, ¢Fe( 4PO4/graphite pouch cells after formation at 3.90 V,
obtained from equivalent circuit fitting at 10 °C. The equivalent circuit can be referred to
Figure S1.

Pouch +/+ /2 -/- 12
Electrolytes
(Q cm?) (Q cm?) (Q cm?)
CTRL 62.59 26.32 34.90
CTRL+2VC 96.54 27.52 54.75

CTRL+2VCIDTD 100.7 58.65 32.56




Table S10. Summary of R values for LiMng ¢Fe( 4PO4/LiMn, ¢Fe( 4PO, and graphite/graphite
symmetric cells, as well as LiMn, ¢Fey 4PO4/graphite pouch cells after long-term cycling at 3.90
V, obtained from equivalent circuit fitting at 10 °C. The equivalent circuit can be referred to
Figure S1

Pouch ++ /2 -/- 12
Electrolytes
(Q cm?) (Q cm?) (Q cm?)
CTRL 170.4 120.7 46.38
CTRL+2VC 186.3 131.2 64.13

CTRL+2VCIDTD 204.4 170.5 38.20




Table S11. Summary of increase rate of R, per cycle for LiMn, ¢Fey 4PO4/LiMn, ¢Fey 4PO4 and
graphite/graphite symmetric cells, as well as LiMn ¢Fe, 4PO4/graphite pouch cells.

Pouch +/+ /2 -/- 12
Electrolytes
(Q cm? cycle) (Q cm? cycle) (Q cm? cycle!)
CTRL 0.6534 0.5720 0.0696
CTRL+2VC 0.2274 0.2625 0.02375

CTRL+2VCIDTD 0.1700 0.18336 0.0092




Table S12. Binding energies of peak assignment in the XPS spectra (Figure S8)

Peaks Binding energy (eV) Species
68967 C-F
Fl1s 687438 P-F
68548 LiF
534.5%10 Oligo VC
O s 533-533.54910 C-0
530.7%-10 ROLi
288411 C=0/C-0=0
286.7+ 11 C-0/C-0-C
Cls
2851011 C-C/C-H

283%10 LiCq




Table S13. Energy information for the four different types of (010) lattice surfaces: Li-top, Mn/Fe-top,
Li-O-top, and Mn/Fe-O-top

Atom Movement Relative Energy
Surface type Restriction DFT Total Energy (eV) (eV)
Li-top 1 layer at Bottom -100460.217 73.486
Mn/Fe-top 1 layer at Bottom -100533.685 0.000
1 layer at Bottom -100441.305 92.380
Li-O-top
2 layers at Bottom -100456.313 77.371
1 layer at Bottom -100518.895 14.790
Mn/Fe-O-top

2 layers at Bottom -100510.980 22.704
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