Breaking the H_2O dissociation-OH desorption scaling relationship in alkaline hydrogen evolution by oxophilic single atom M_1 -Ru_n electrocatalyst

Xinhu Liang,^{#a} Zhihao Zhang,^{#b} Zhe Wang,^{#a} Mingzhen Hu,^{*ab} Dan Cheng,^c Yue Jiang,^a Hao Ren,^a Fengyi Shen,^a Shitu Yang,^a Xiaoxin Yang,^a Wenkun Jiang,^a Xianghui Shi,^a Zihao Ma,^a and Kebin Zhou^{*abd}

[#]. These authors contributed equally to this work.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

^{a.} School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China. E-mail: humingzhen12@ucas.ac.cn; kbzhou@ucas.ac.cn

^{b.} National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.

^c College of Pharmacy, Shandong Second Medical University, Weifang, 261053, PR China.

^{d.} Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, Shandong Province, China.

Experimental Section

Materials: All chemicals were of analytical grade and used as received without further purification. Tris(hydroxymethyl)aminomethane was purchased from the Alfa Aesar Chemicals Co., Ltd. Zinc nitrate hexahydrate, iron chloride hexahydrate and concentrated hydrochloric acid were acquired from the Sinopharm Chemical Reagent Co., Ltd. Ruthenium chloride was obtained from the Macklin Biochemical Co., Ltd. Molybdenum powder. samarium nitrate hexahydrate, lanthanum nitrate hexahydrate, dopamine hydrochloride and sodium hydroxide were purchased from the Aladdin Biochemical Technology Co., Ltd. Hydrogen peroxide and concentrated nitric acid were bought from the Beijing Institute of Chemical Reagents Co.,Ltd. The 20% Pt/C catalysts was purchased from the Sigma-Aldrich. Ethanol were obtained from the Tongguang Fine Chemical Company Beijing.

Preparation of $La(OH)_3$ nanorods: $La(OH)_3$ nanorods were synthesized according to previous report.¹ In a typical preparation, 11.54 g of $La(NO_3)_3 \cdot GH_2O$ was sufficiently dissolved in 20 mL of deionized water and 40 mL of 18 M NaOH solution was then added to make a homogeneous system. After stirring thoroughly for 30 min, the suspension was transferred to a 100 mL Teflon-lined autoclave and heated at 110 °C for 24 hours. When the autoclave was cooled down to room temperature, centrifugation and washing procedures were further conducted to clean the solid products. Finally, the acquired solid products were dried in oven at 100 °C overnight.

*Preparation of Sm(OH)*₃ *nanorods*: Sm(OH)₃ nanorods were prepared taking similar procedures to that of the La(OH)₃ *nanorods except for using using 11.81 g of Sm(NO*₃)₃·6H₂O instead of La(NO₃)₃·6H₂O.

Preparation of MoO_2 nanorods: MoO_2 nanorods were synthesized modified from previous report²: 7.5 ml of H_2O_2 was slowly added to 0.75 g of molybdenum powder drop by drop (caution this is a very exothermal process) under mild stirring. After which, 37.5 ml of deionized water and 15 ml of ethanol was added the above obtained solution in sequence and further stirred for 30 min. The acquired orange solution was then transferred to a 100 ml Teflon-lined autoclave and heated at 200 °C for 72 hours. After the autoclave was cooled to room temperature, the product was collected by centrifugation and washed several times with ethanol, and then dried in vacuum oven at 60 °C for 24 hours.

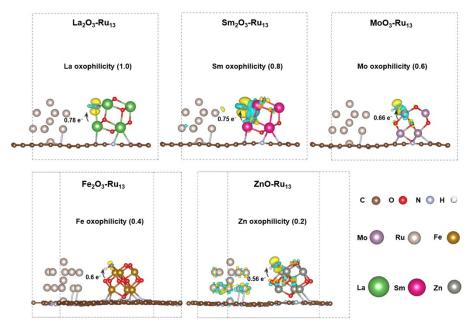
Preparation of α-*FeOOH nanorods*: α-FeOOH nanorods were synthesized as follows³: 3.2 g of FeCl₃·6H₂O was firstly dissolved in 30 ml of deionized water, and 30 ml of 2 M NaOH solution was then added to the above solution under mild stirring. The obtained products were washed several times by deionized water and then dissolved in 60 ml 2 M NaOH solution to allow for stirring vigorously for 30 min. The suspension was further transferred to a 100 ml Teflon-lined autoclave and heated to 160°C for 20 hours. After the autoclave was cooled down to room temperature, the product was collected by centrifugation and washed several times with deionized water, and dried in oven at 80 °C overnight. Preparation of ZnO nanorods: ZnO nanorods was prepared by the following procedures.⁴ 7.434 g of $Zn(NO_3)_2 \cdot 6H_2O$ was dissolved in 45 ml of deionized water, 32 ml of 1.5 M KOH solution was then added drop by drop to the above solution, stirred vigorously for 30 min. Subsequently, the obtained suspension was transferred to a 100 ml Teflon-lined autoclave and heated at 110 °C for 20 hours. After the autoclave was cooled down to room temperature, the product was collected by centrifugation and washed several times with deionized water and then dried in oven at 120 °C for 12 hours.

PDA coating treatment and thermal transition of the M-containing oxides/hydroxides nanorods: Taking the PDA coating of La(OH)₃ nanorods as an example. To begin with, 0.5 g of La(OH)₃ nanorods and 0.2432 g of Tris were added to 200 ml of deionized water and sonicated for 1 hour to obtain a suspension. After which, 0.5 g of dopamine hydrochloride dissolved in 20 ml of deionized water was added to the above suspension under mild stirring. The mixed solution was further stirred at room temperature for 12 hours to assure efficient PDA coating. The acquired solid products were collected by centrifugation and washed with deionized water and ethanol for several times, and then dried in an oven at 60 °C overnight to obtain the La(OH)₃@PDA intermediates. Subsequently, La(OH)₃@PDA was firstly pyrolyzed at 500 °C for 2 hours, and then at 800 °C for 2 hours under argon. After thermal annealing, the obtained La₂O₃@NC was selectively etched by hydrochloric acid or the mixture of hydrochloric acid, hydrogen peroxide, and nitric acid at 65 °C to attain the La₂O₃/NC or the La₁/NC products, respectively. The preparation of other M_xO_y/NC or M₁/NC products were similar to the La₂O₃/NC or the La₁/NC.

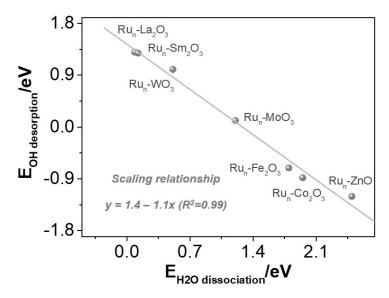
Preparation of the M_xO_y -Ru_n/NC catalysts: The preparation of the M_{xOy} -Ru_n/NC catalysts were based on impregnation route. Taking the synthesis of the La₂O₃-Ru_n/NC catalyst as an example. Firstly, 199 ul of 0.1 M RuCl₃ solution was added to 10 ml of deionized water. After which, 0.02 g of La₂O₃/NC support was added to the above solution and mildly stirring for 12 hours. The solid products were obtained by centrifugation and dried in an oven at 60 °C overnight. Finally, the acquired solid powders were reduced with hydrogen at 300 °C for 2 hours. Other M_xO_y -Ru_n/NC catalysts were prepared similarly to that of the La₂O₃-Ru_n/NC catalyst.

Preparation of the M_1 - Ru_n/NC catalysts: M_1 - Ru_n/NC samples were synthesized in the same way to the M_xO_y - Ru_n/NC catalyst, except for taking the M_1/NC as the support rather than the M_xO_y/NC .

Materials characterization: The crystallographic structures of materials were collected by the powder X-ray diffraction (XRD, Bruker D8 ADVANCE, Cu K α radiation, λ =1.5406 Å). The element amounts of catalyst were determined by the inductively coupled plasma optical emission spectrometer (ICP-OES) of Aligent ICPOES730. Transmission election microscope (TEM) images and scanning transmission election microscope (STEM) images were collected on the FEI Talos F200X (Thermo) operated at 200 kV. Atomic resolved STEM observation was carried out on Themis Z (Titancubed·ThemisZ: 300kV·Thermo-Fisherscientific). The X-ray photoelectron spectroscopy (XPS) spectra were obtained by the Thermo Fisher QXi X-ray Photoelectron Spectrometer. The XAFS experiments were performed on beamline BL14W1 at the Shanghai Synchrotron Radiation Facility (SSRF). All the spectra data were collected at ambient temperature. The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) profiles were analyzed by the Athena and Artemis modules implemented in the IFEFFIT software packages. The k^3 -weighted EXAFS spectra were obtained via subtracting the background from the overall absorption and normalized based on the edge-jump step. In order to attain the quantitative coordination information of the interested atoms, the least-squares curve parametes were fitted to the EXAFS spectra by virtue of the ARTEMIS module.


Electrochemical measurements: A standard three-electrode testing system with a CHI 760E electrochemical workstation was employed to evaluate the alkaline HER performances of catalysts that was performed in 1 M KOH solution without iR compensation. Graphite rod, Hg/HgO electrode and glassy carbon electrode (GCE), were used as the counter electrode, reference electrode and working electrode, respectively. All the reaction potentials mentioned in this work were normalized to the reversible hydrogen electrode (RHE) through the following equation: $E_{RHE} = E_{Hg/HgO}$ $+ 0.0591 \times pH + 0.098$. The working electrode was functionalized as follows, 1 mg of catalyst was homogeneously dispersed in 150 µL solution containing 65 µL of water, 65 μ L of isopropanol and 20 μ L of Nafion under sonication. Subsequently, 0.8 μ L of the as-made ink was dropped onto the a polished GCE and naturally dried in air. The polarization curves were obtained by sweeping the potential from 0.1 to -0.39 V at a scan rate of 10 mV s⁻¹ with iR-compensation. The stability test of the catalysts was performed by the chronopotentiometric technique at a current density of 60 mA/cm⁻ ² via coating 7.5 μ L of the above-mentioned ink on 0.5 cm² hydrophilic carbon paper performed at a H-cell. Accelerated durability tests (ADT) were performed on GCE by cycling between 0.06 and -0.15 V for 4000 cycles at room temperature. The EIS measurements were carried out at a reaction potential of 50 mV with a 5 mV amplitude and a frequency range from 1000,000 to 0.01 Hz.

In situ Raman measurements: The in situ Raman spectra were recorded on an inVia Reflex instrument with a confocal microscope. During the test, all the spectra were acquired at room temperature with a 532 nm excitation. Calibration was conducted using the 520 cm⁻¹ peak (silicon wafer standard). To avoid damage samples, the power of laser was decreased by a factor of 10. In situ Raman measurements were carried out on a home-made electrochemical reaction cell using a standard three-electrode system containing 1.0 M KOH electrolyte. The Ag/AgCl electrode and platinum wire were used as the reference electrode and counter electrode, respectively. To make the working electrode, catalyst was firstly ultrasonically dispersed in 150 μ L solvent (65 μ L H₂O, 65 μ L isopropanol and 20 μ L Nafion). Subsequently, 5 μ L of the homogeneous ink was dropped onto a carbon paper with an area of 1 cm². The in situ Raman data were obtained by the chronoamperometry measurements in the potential range from 0 mV to -70 mV. The spectra were recorded at steady-state conditions by holding at the desired potential for at least 120 s.


CO stripping measurements: The CO stripping measurements were carried out in 1.0 M KOH solution using a standard three-electrode system. Before the test, Argon gas was bubbled in the KOH solution for at least 30 min to remove the dissolved oxygen. CO gas (40 vol%) was then bubbled into the solution for 30 min with chronoamperometry test at 0 V vs. RHE to ensure sufficient adsorption of CO on the surface of catalyst. The electrode was then quickly transferred into an argon-saturated fresh 1.0 M KOH solution. The CO stripping current was acquired by the cyclic vlotammetry in the potential range from 0 to 1.2 V vs. RHE with a scan rate of 50 mV s⁻¹.

Device-level alkaline water electrolysis evaluation: The device was composed of the cathode (La_1-Ru_n/NC or commercial 20wt.% Pt/C coated on carbon paper), anode (Nickel foam), and the commercial AEM membrane (Fumasep FAA-3-PK-130). In detail, Nickel foam and the membrane were firstly immersed in 1 M KOH solution and 0.5 M NaCl solution for at least 24 hours prior to test. The anode was functionalized by an air-spraying route. During the test, the Ru and Pt loadings were controlled to be 0.03 mg cm⁻² and 0.2 mg cm⁻², respectively. Subsequently, the cathode, membrane and anode were integrated between two Ti bipolar plates to obtain the assembly device. The water electrolysis was operated at 80 °C under ambient pressure using 1.0 M KOH as the electrolyte on anodic side. Polarization curves were obtained from 0.05 to 6.0 A·cm⁻² at a stepwise rate of 0.05 A·cm⁻². The stability test was performed by the chronopotentiometry technique at varied current densities.

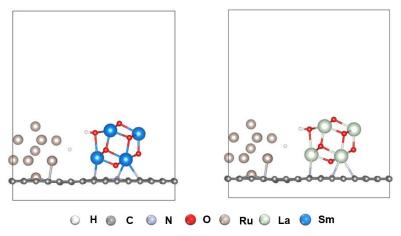
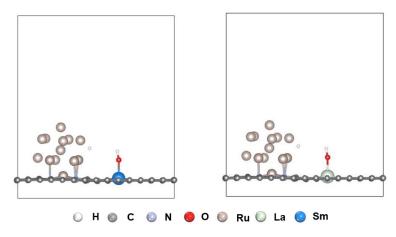
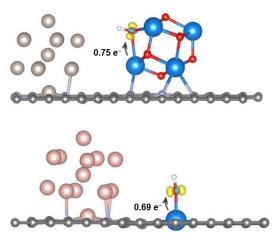
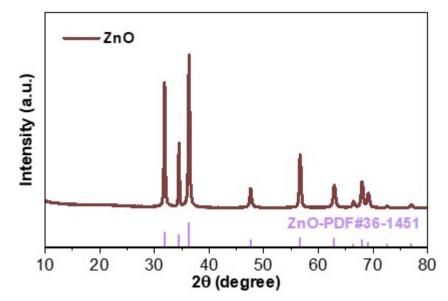
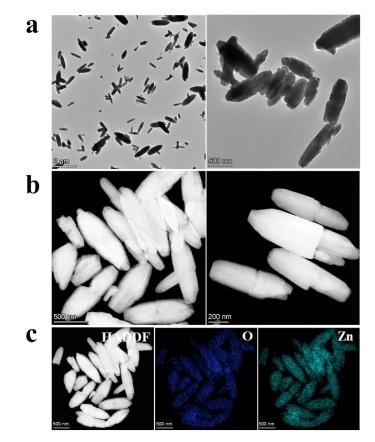

DFT calculations: The slab structural models of single atom catalysts and metal oxide cluster catalysts were constructed by taking consideration of the EXAFS fitting data in Table S1. A 15 Å-thick vacuum was introduced in the z-direction to avoid artificial interaction between periodic images. Periodic spin-polarized DFT calculations were conducted by virtue of the Vienna Ab-initio simulation package (VASP 5.4.4) with the r²SCAN meta-generalized gradient approximation (meta-GGA) functional and DFT-D4 corrections.⁵ The core electrons were demonstrated through the projected augmented wave (PAW) method.⁶ Wherein, the valence electrons (La: 5s5p6s5d, Sm: 5s4d5p6s4f, Ru: 4p5s4d, Mo: 4s4p5s4d, Zn: 4s3d, Fe: 3p4s3d, O: 2s2p, N: 2s2p, C: 2s2p, H: 1s) were expanded on plane-wave basis sets with a cutoff energy of 520 eV. A gamma point sampling based on the Monkhorst-Pack method was employed to calculate the slab structures. The self-consistent calculations applied a convergence energy threshold of 10⁻⁶ eV and a force threshold of 0.02 eV Å⁻¹. The climbing image nudge elastic band (CI-NEB) method⁷ was conducted to demonstrate the energy barriers of the transition states during the H_2O dissociation. The Gibbs free energy changes were acquired by the equation $\Delta G = \Delta E + \Delta ZPE - T\Delta S$, where ΔZPE and ΔS were the changes in zero-point energy and entropy, as determined by considering the adsorbed species and water molecules in the harmonic vibrational mode. The offresonance Raman activities were calculated through the phonons and macroscopic dielectric tensor obtained from VASP (https://github.com/raman-sc/VASP).

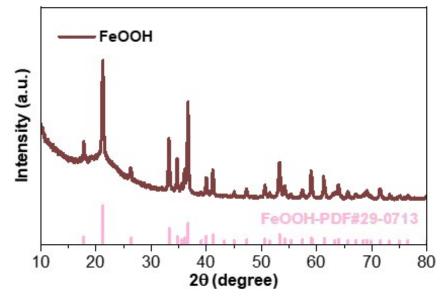
Fig. S1. Charge density difference analysis of OH adsorption over the M_xO_y -Ru₁₃ catalysts (M = La, Sm, Mo, Fe, Zn).

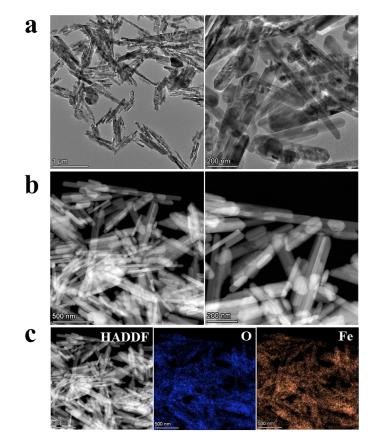
Fig. S2. The plots of OH desorption energies of the M_xO_y -Ru₁₃ catalyst (M=La, Sm, Mo, Fe, Zn, W, Co) against their water dissociation energies.

Fig. S3. The OH adsorption patterns on the Sm_2O_3 -Ru₁₃ model and the La_2O_3 -Ru₁₃ model, respectively.


Fig. S4. The OH adsorption patterns on the Sm_1-Ru_{13} model and the La_1-Ru_{13} model, respectively.


Fig. S5. Charge density difference of OH adsorption on the Sm_2O_3 -Ru₁₃ catalyst and Sm_1 -Ru₁₃ catalyst, respectively.


Fig. S6. The XRD patterns of the ZnO nanorods. The vertical lines represent for the standard peaks of ZnO (PDF no. 36-1451).

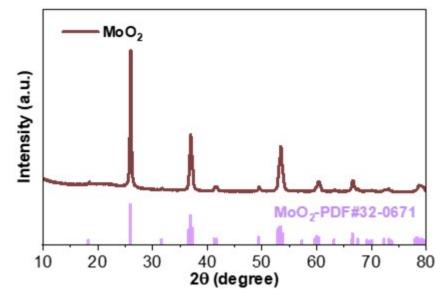

Fig. S7. (a) TEM images, (b) STEM images and (c) EDS mapping images of the prepared ZnO nanorods.

Fig. S8. The XRD patterns of the obtained FeOOH nanorods. The vertical lines represent for the standard peaks of FeOOH (PDF no. 29-0713).

Fig. S9. (a) TEM images, (b) STEM images and (c) EDS mapping images of the as-synthesized FeOOH nanorods.

Fig. S10. The XRD patterns of the acquired MoO_2 nanorods. The vertical lines represent for the standard peaks of MoO_2 (PDF no. 32-0671).

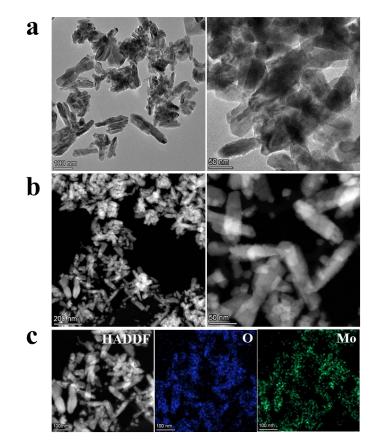
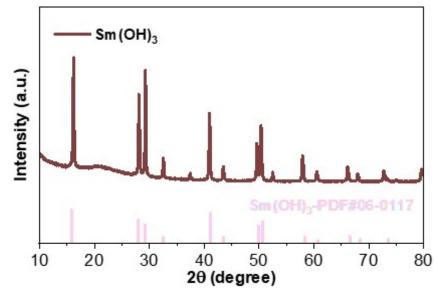



Fig. S11. (a) TEM images, (b) STEM images and (c) EDS mapping images of the synthesized MoO_2 nanorods.

Fig. S12. The XRD patterns of the acquired $Sm(OH)_3$ nanorods. The vertical lines represent for the standard peaks of $Sm(OH)_3$ (PDF no. 06-0117).

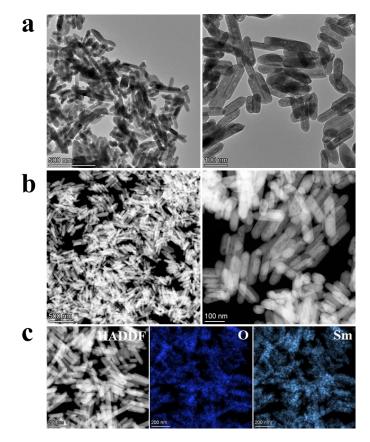
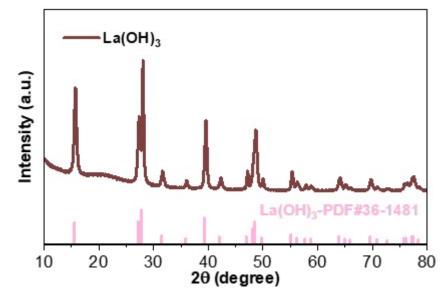



Fig. S13. (a) TEM images, (b) STEM images and (c) EDS mapping images of the prepared $Sm(OH)_3$ nanorods.

Fig. S14. The XRD patterns of the acquired $La(OH)_3$ nanorods. The vertical lines represent for the standard peaks of $La(OH)_3$ (PDF no. 36-1481).

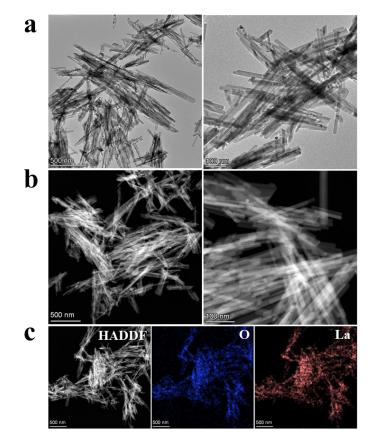


Fig. S15. (a) TEM images, (b) STEM images and (c) EDS mapping images of the synthesized $La(OH)_3$ nanorods.

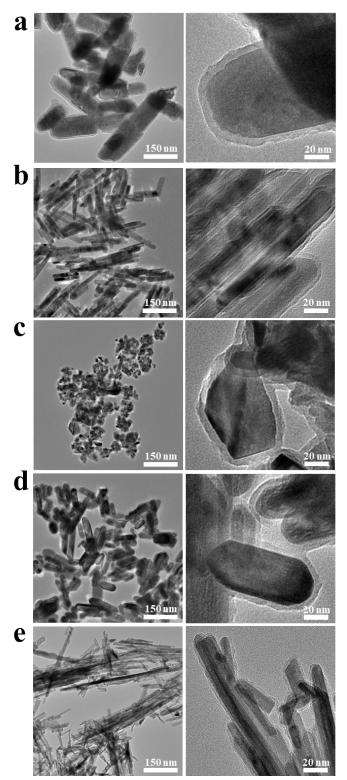
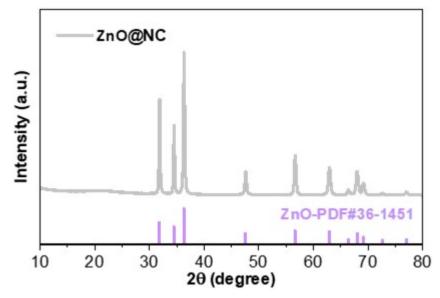



Fig. S16. TEM images of (a) ZnO@PDA, (b) FeOOH@PDA, (c) $MoO_2@PDA$, (d) Sm(OH)₃@PDA and (e) La(OH)₃@PDA.

Fig. S17. The XRD patterns of the acquired ZnO@NC nanorods. The vertical lines represent for the standard peaks of ZnO (PDF no. 36-1451).

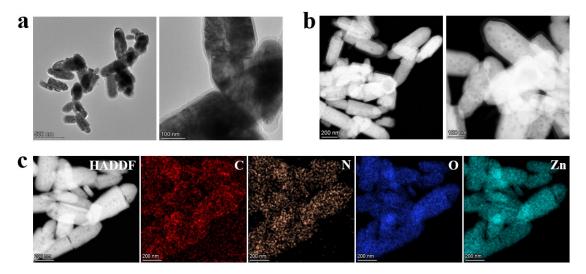
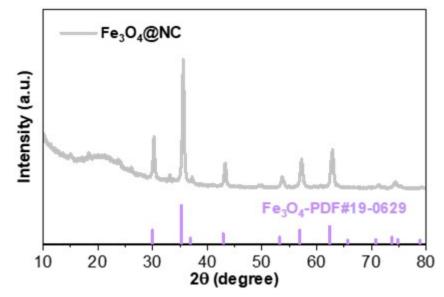



Fig. S18. (a) TEM images , (b) STEM images and (c) EDS mapping images of the ZnO@NC.

Fig. S19. The XRD patterns of the prepared $Fe_3O_4@NC$ nanorods. The vertical lines represent for the standard peaks of Fe_3O_4 (PDF no. 19-0629).

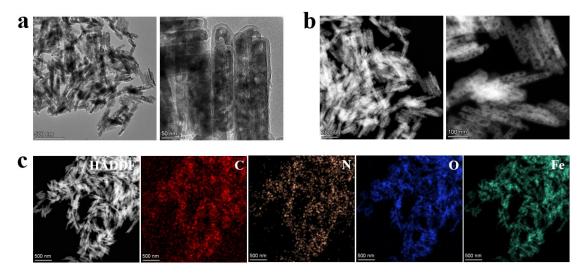
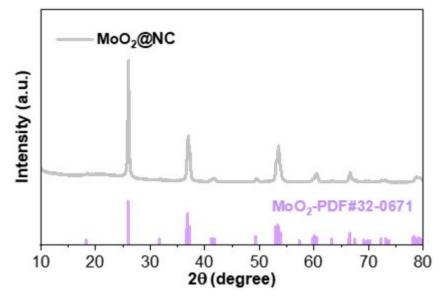



Fig. S20. (a) TEM images , (b) STEM images and (c) EDS mapping images of the $Fe_3O_4@NC$.

Fig. S21. The XRD patterns of the prepared $MoO_2@NC$ nanorods. The vertical lines represent for the standard peaks of MoO_2 (PDF no. 32-0671).

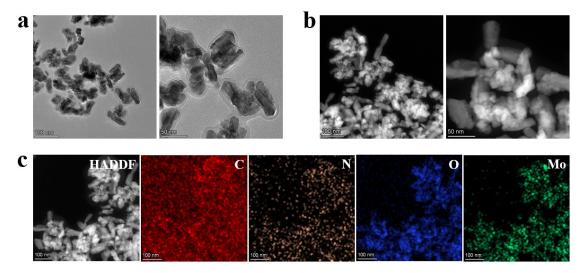
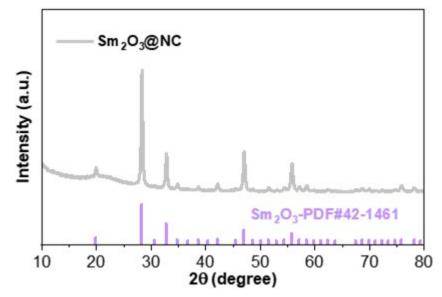



Fig. S22. (a) TEM images , (b) STEM images and (c) EDS mapping images of the MoO₂@NC.

Fig. S23. The XRD patterns of the prepared $Sm_2O_3@NC$ nanorods. The vertical lines represent for the standard peaks of Sm_2O_3 (PDF no. 42-1461).

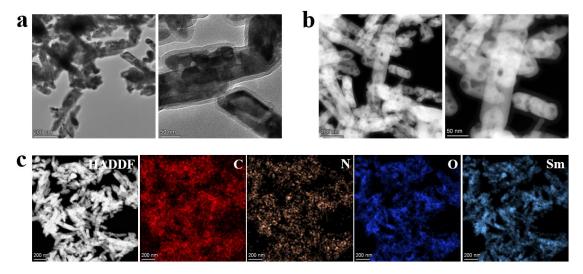
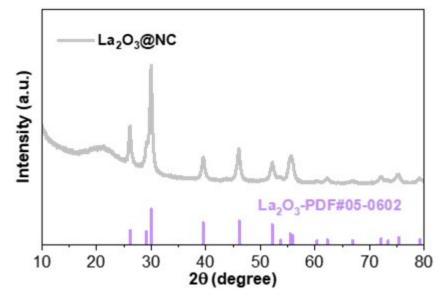



Fig. S24. (a) TEM images , (b) STEM images and (c) EDS mapping images of the Sm₂O₃@NC.

Fig. S25. The XRD patterns of the prepared La_2O_3 @NC nanorods. The vertical lines represent for the standard peaks of La_2O_3 (PDF no. 05-0602).

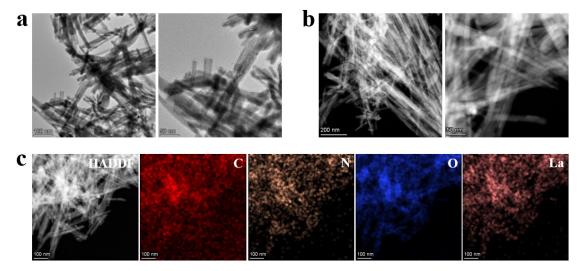
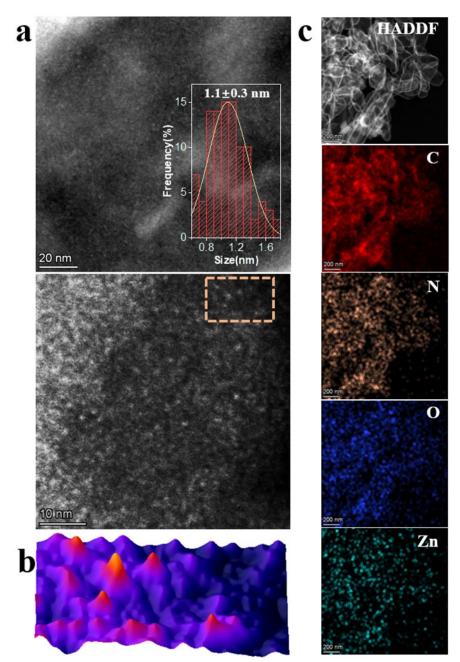
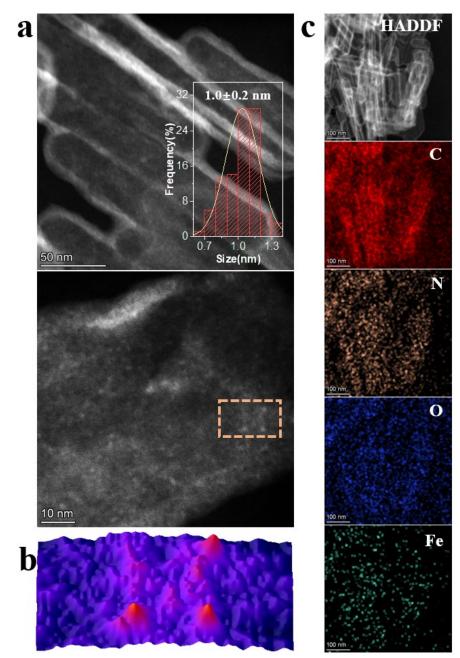
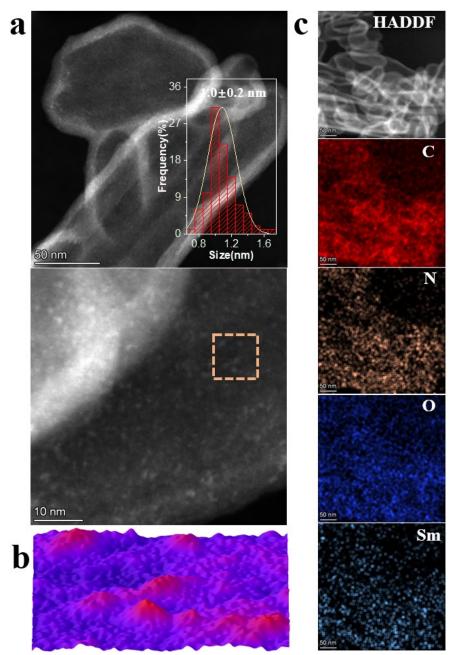




Fig. S26. (a) TEM images , (b) STEM images and (c) EDS mapping images of the La₂O₃@NC.


Fig. S27. (a) TEM images (inset is the size distribution of ZnO nanoclusters of ZnO/NC), (b) 3D surface tomographic image STEM images and (c) EDS mapping images of the of the ZnO/NC.

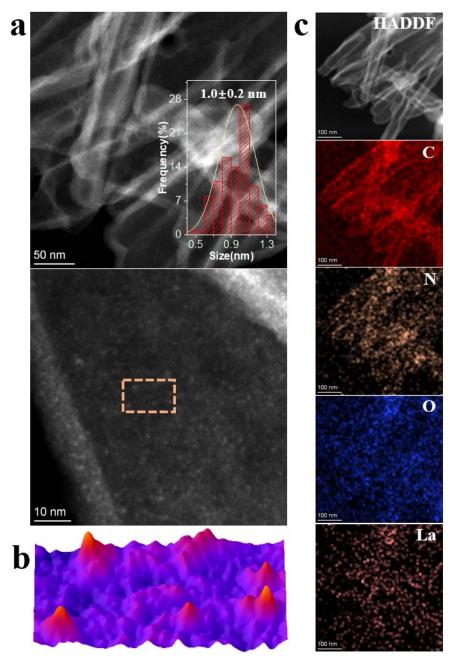

Fig. S28. (a) TEM images (inset is the size distribution of Fe_2O_3 nanoclusters of Fe_2O_3/NC), (b) 3D surface tomographic image STEM images and (c) EDS mapping images of the of the Fe_2O_3/NC .

Fig. S29. (a) TEM images (inset is the size distribution of MoO_3 nanoclusters of MoO_3/NC), (b) 3D surface tomographic image STEM images and (c) EDS mapping images of the of the MoO_3/NC .

Fig. S30. (a) TEM images (inset is the size distribution of Sm_2O_3 nanoclusters of Sm_2O_3/NC), (b) 3D surface tomographic image STEM images and (c) EDS mapping images of the of the Sm_2O_3/NC .

Fig. S31. (a) TEM images (inset is the size distribution of La_2O_3 nanoclusters of La_2O_3/NC), (b) 3D surface tomographic image STEM images and (c) EDS mapping images of the of the La_2O_3/NC .

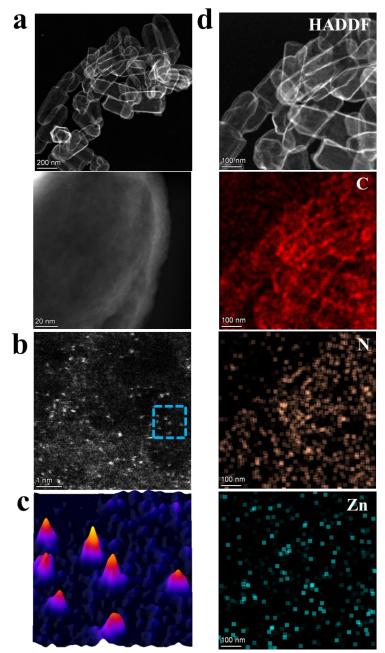


Fig. S32. (a)-(b) STEM images, (c) 3D surface tomographic image, (d) EDS mapping images of the Zn_1/NC .

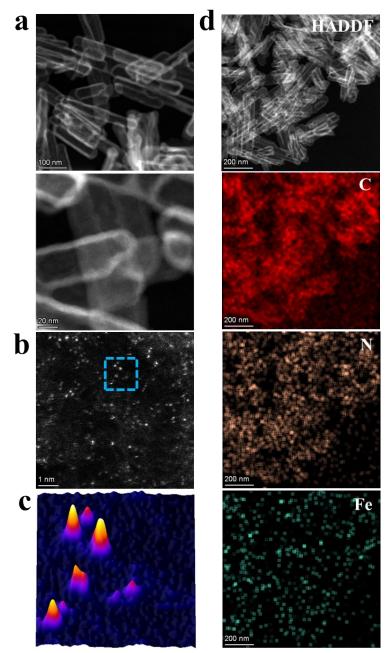


Fig. S33. (a)-(b) STEM images, (c) 3D surface tomographic image, (d) EDS mapping images of the Fe_1/NC .

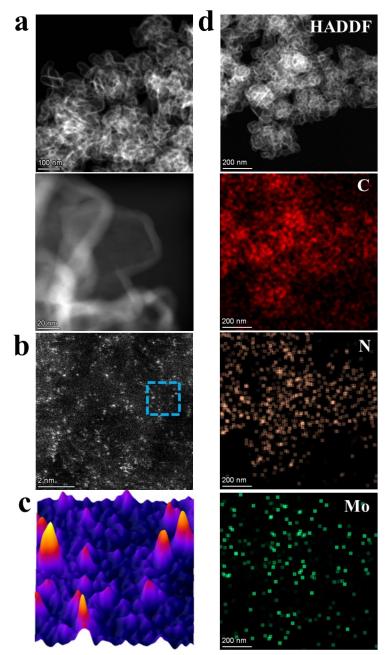


Fig. S34. (a)-(b) STEM images, (c) 3D surface tomographic image, (d) EDS mapping images of the Mo_1/NC .

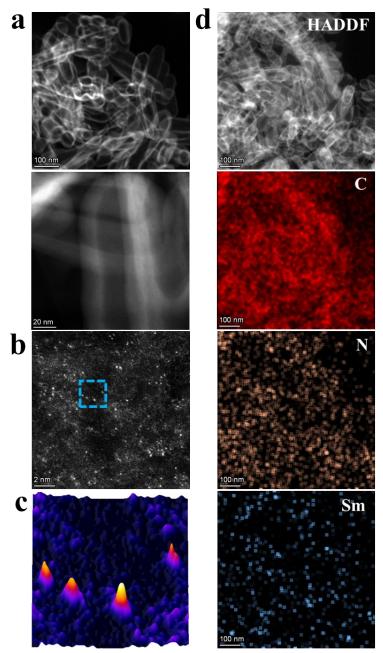
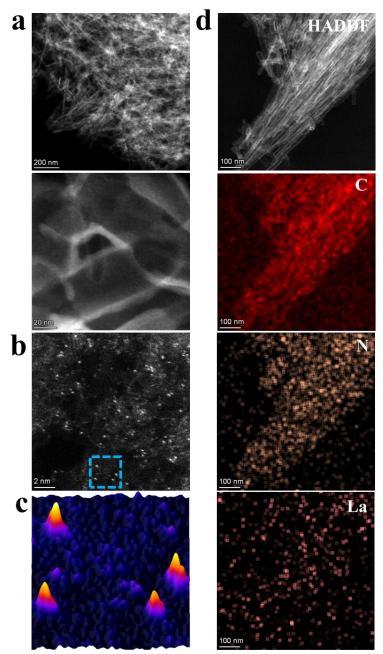



Fig. S35. (a)-(b) STEM images, (c) 3D surface tomographic image, (d) EDS mapping images of the Sm_1/NC .

Fig. S36. (a)-(b) **S**TEM images, (c) 3D surface tomographic image, (d) EDS mapping images of the La_1/NC .

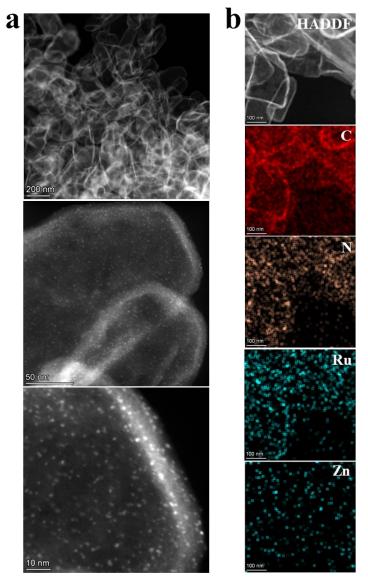


Fig. S37. (a) STEM images, (b) EDS mapping images of the Zn_1 -Ru_n/NC.

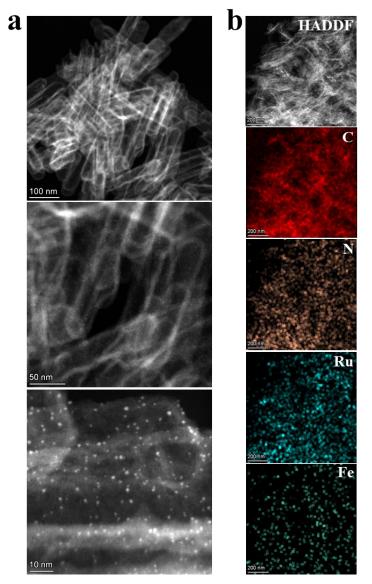


Fig. S38. (a) STEM images, (b) EDS mapping images of the Fe_1 -Ru_n/NC.

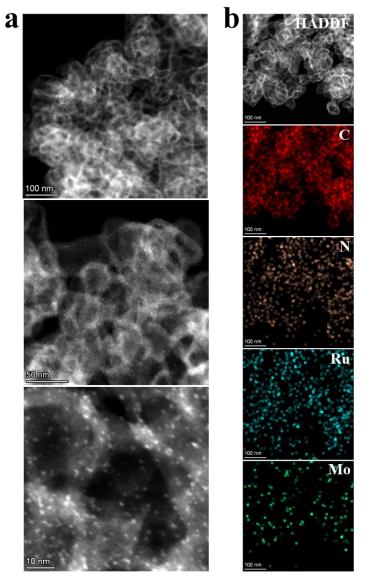


Fig. S39. (a) STEM images, (b) EDS mapping images of the Mo_1 -Ru_n/NC.

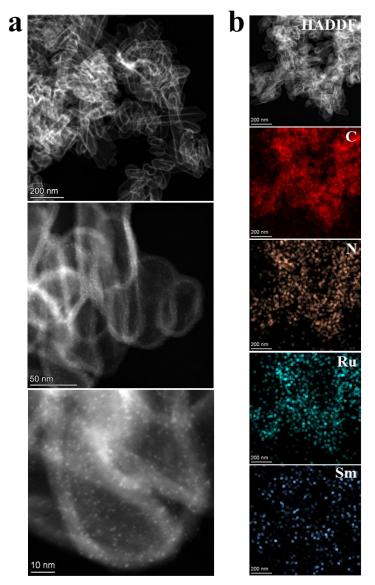
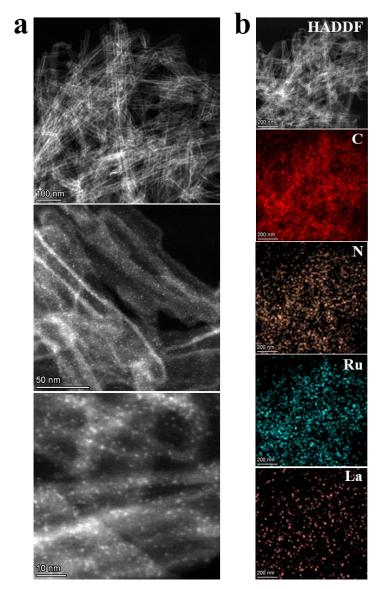
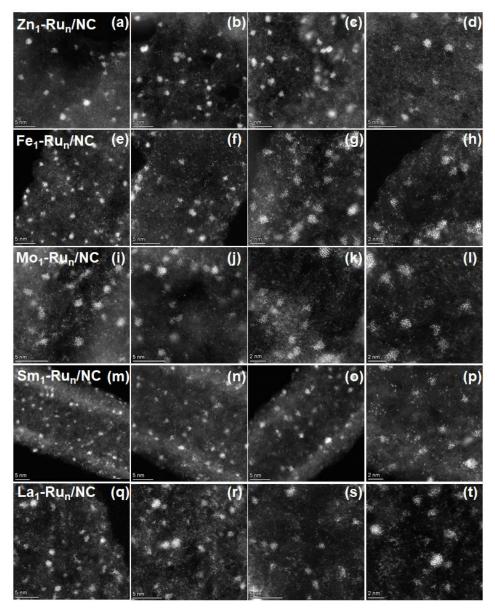
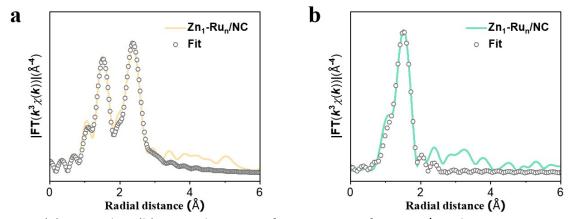
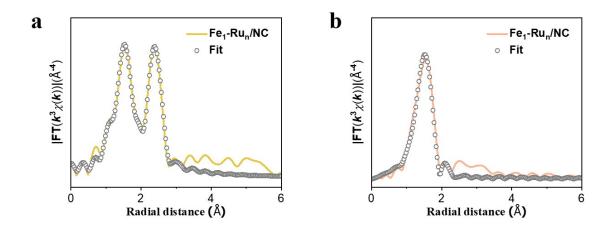
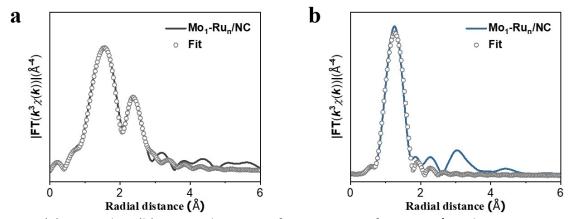


Fig. S40. (a) STEM images, (b) EDS mapping images of the Sm_1 -Ru_n/NC.


Fig. S41. (a) STEM images, (b) EDS mapping images of the La_1 -Ru_n/NC.


Fig. S42. (a)-(d) The atomic-resolution HAADF-STEM images of the Zn_1-Ru_n/NC catalyst. (e)-(h) The atomic-resolution HAADF-STEM images of the Fe_1-Ru_n/NC catalyst. (i)-(I) The atomic-resolution HAADF-STEM images of the Mo_1-Ru_n/NC catalyst. (m)-(p) The atomic-resolution HAADF-STEM images of the Sm_1-Ru_n/NC catalyst. (q)-(t) The atomic-resolution HAADF-STEM images of the Sm_1-Ru_n/NC catalyst. (q)-(t) The atomic-resolution HAADF-STEM images of the La_1-Ru_n/NC catalyst.

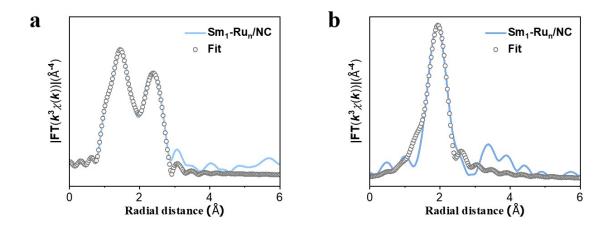
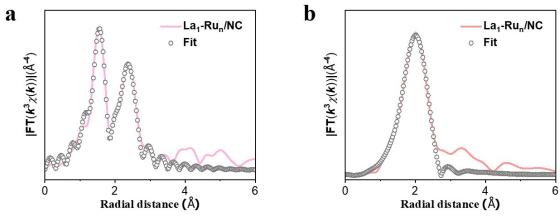
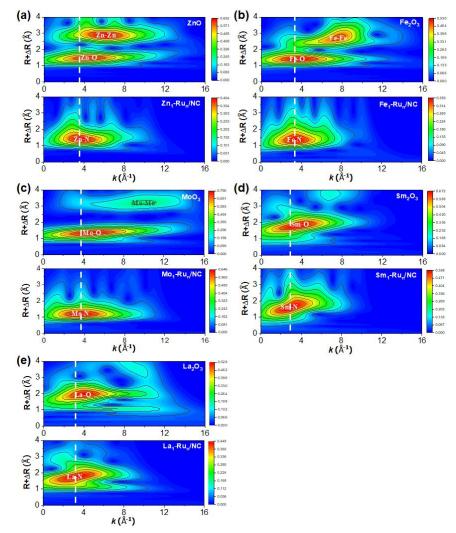
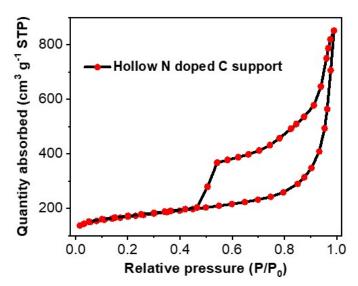
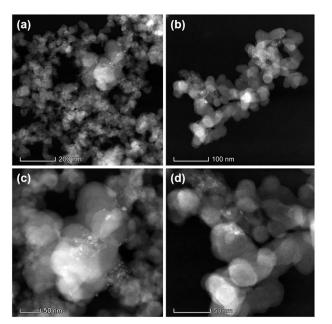

Fig. S43. (a) Ru K-edge, (b) Zn K-edge EXAFS fitting curves of Zn₁-Ru_n/NC shown in *R* space.

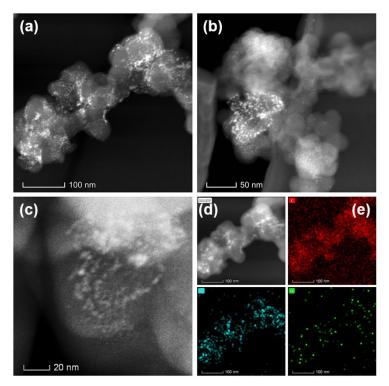
Fig. S44. (a) Ru K-edge, (b) Fe K-edge EXAFS fitting curves of Fe₁-Ru_n/NC shown in *R* space.

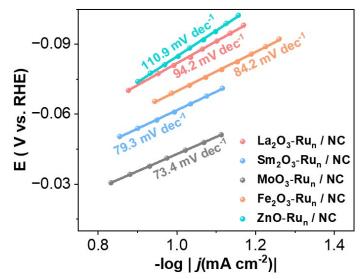
Fig. S45. (a) Ru K-edge, (b) Mo K-edge EXAFS fitting curves of Mo₁-Ru_n/NC shown in *R* space.

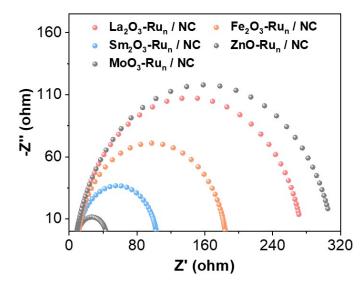
Fig. S46. (a) Ru K-edge, (b) Sm L_3 -edge EXAFS fitting curves of Sm₁-Ru_n/NC shown in *R* space.

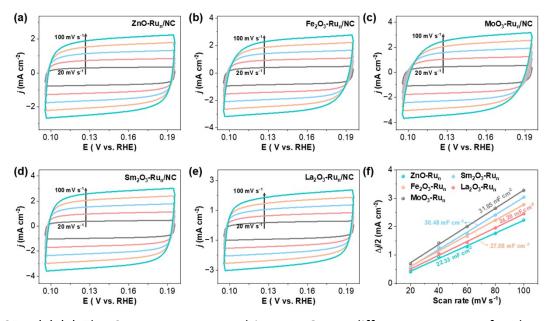




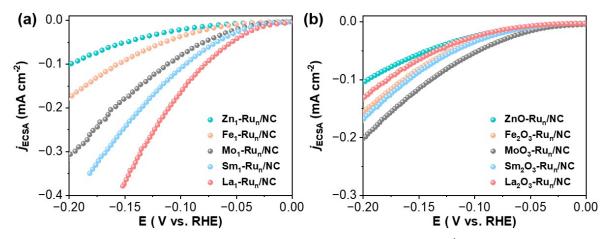

Fig. S47. (a) Ru K-edge, (b) La L₃-edge EXAFS fitting curves of La₁-Ru_n/NC shown in *R* space.

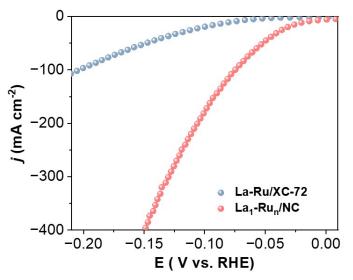

Fig. S48. (a) The wavelet transforms for the Zn K-edge EXAFS spectra of the Zn₁-Ru_n/NC catalyst and reference ZnO. (b) The wavelet transforms for the Fe K-edge EXAFS spectra of the Fe₁-Ru_n/NC catalyst and reference Fe₂O₃. (c) The wavelet transforms for the Mo K-edge EXAFS spectra of the Mo₁-Ru_n/NC catalyst and reference MoO₃. (d) The wavelet transforms for the Sm L-edge EXAFS spectra of the Sm₁-Ru_n/NC catalyst and reference Sm₂O₃. (e) The wavelet transforms for the La L-edge EXAFS spectra of the La₁-Ru_n/NC catalyst and reference La₂O₃.

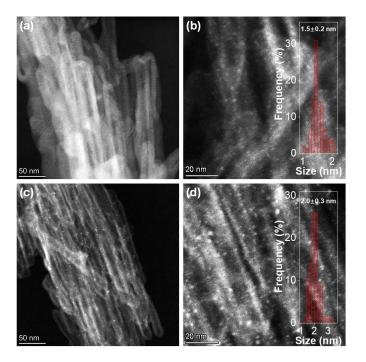

Fig. S49. The nitrogen adsorption–desorption isotherm profile of the dopamine-derived hollow-structured nitrogen-doped carbon support.


Fig. S50. (a)-(d) The HAADF-STEM images of the La/XC-72 catalyst with varied magnifications synthesized by loading the same amount of La onto the XC-72 as compared with the La_1 -Ru_n/NC catalyst.


Fig. S51. (a)-(c) The HAADF-STEM images of the La-Ru/XC-72 catalyst with varied magnifications. (d) EDS mapping images of the synthesized La-Ru/XC-72 catalyst. To be noted that the Ru and La loadings in the La-Ru/XC-72 catalyst is kept the same to the La₁-Ru_n/NC catalyst.


Fig. S52. The Tafel slopes of the M_xO_v -Ru_n/NC catalysts (M = Zn, Fe, Mo, Sm and La).


Fig. S53. Nyquist curves for the M_xO_y -Ru_n/NC catalysts (M = Zn, Fe, Mo, Sm and La).


Fig. S54. (a)-(e) The CV curves measured in 1M KOH at different scan rates for the $M_xO_{y^-}$ Ru_n/NC catalysts (M=La, Sm, Mo, Fe, Zn), respectively. (f) Capacitive Δj as a function of scan rate of the M_1 -Ru_n/NC catalysts (M=La, Sm, Mo, Fe, Zn), respectively.

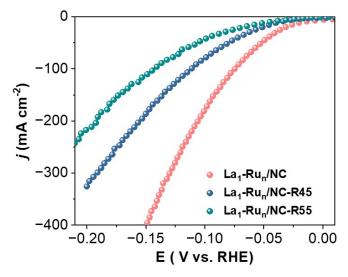
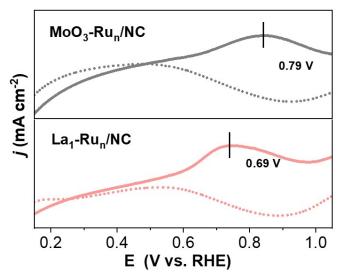
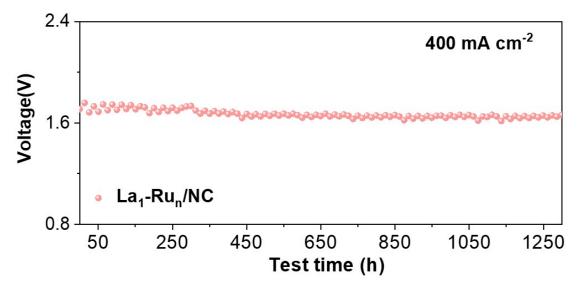
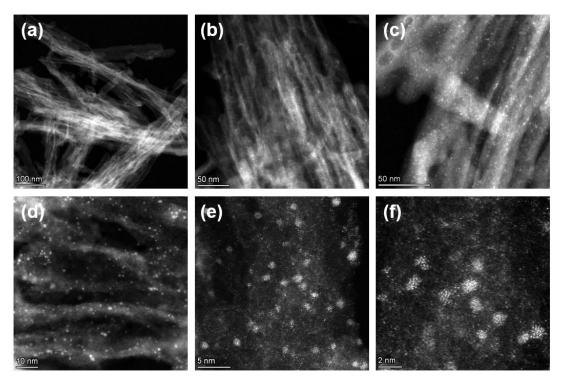

Fig. S55. The linear sweep voltammetry (LSV) curves of the (a) M_1 -Ru_n/NC catalysts (M=La, Sm, Mo, Fe, Zn) and (b) M_xO_y -Ru_n/NC catalysts (M=La, Sm, Mo, Fe, Zn), acquired by normalizing the current densities of these catalysts to their ECSA values.

Fig. S56. The alkaline HER evaluations of the La1-Run/NC catalyst and the La-Ru/XC-72 catalyst conducted in 1M KOH.

Fig. S57. (a)-(b) The HAADF-STEM images of the La_1 -Ru_n/NC-R45 catalyst with varied magnifications. (c)-(d) The HAADF-STEM images of the La_1 -Ru_n/NC-R55 catalyst with varied magnifications. The La_1 -Ru_n/NC-R45 catalyst and the La_1 -Ru_n/NC-R55 catalyst are obtained by reducing the Ru precursors at 450 °C and 550 °C, respectively.

Fig. S58. Electrocatalytic alkaline HER evaluations of the La_1 -Ru_n/NC catalyst, the La_1 -Ru_n/NC-R45 catalyst and the La_1 -Ru_n/NC-R55 catalyst, respectively, performed in 1M KOH.

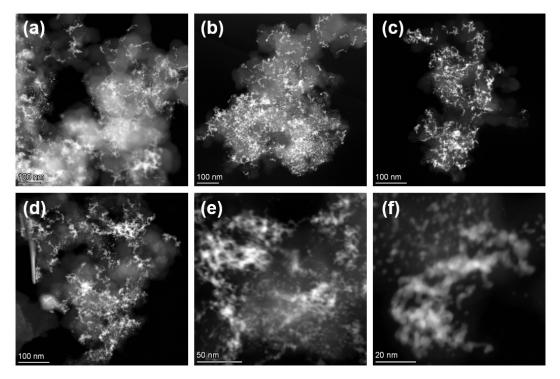

Fig. S59. The CO stripping curves of the La_1 -Ru_n/NC catalyst, and the MoO₃-Ru_n/NC catalyst, respectively.

Fig. S60. The durability test of the NF $||La_1-Ru_n/NC$ measured at the current density output of 400 mA·cm⁻² at 80 °C in 1M KOH.

Fig. S61. (a)-(f) STEM images of the post-reaction La_1 -Ru_n/NC catalyst after the stability test performed at 1000 mA·cm⁻².

Fig. S62. (a)-(f) STEM images of the post-reaction 20 wt.% Pt/C catalyst after the stability test performed at 1000 mA·cm⁻².

Supplementary Tables

Sample	path	CN	R (Å)	σ² (Ų)	ΔE ₀ (eV)	R factor	S ₀ ²
Ru foil	Ru-Ru	12	2.68	0.0042	-4.5	0.0048	0.906
7	Ru-N	4.4	2.05	0.0085	-2.6	- 0.0078	0.876
Zn ₁ -	Ru-Ru	2.3	2.69	0.0040	-2.6	0.0078	0.870
Ru _n /NC	Zn-N	3.7	2.00	0.0067	-1.5	0.0038	0.917
Га	Ru-N	4.1	2.07	0.0101	-1.3	0.0023	0 976
Fe ₁ -	Ru-Ru	1.9	2.70	0.0068	-1.3		0.876
Ru _n /NC	Fe-N	4.2	2.03	0.0095	2.2	0.0120	0.798
	Ru-N	4.1	2.05	0.0067	-0.8	- 0.0120	0.862
Mo ₁ -	Ru-Ru	1.9	2.70	0.0025	-0.8	- 0.0120	0.862
Ru _n /NC	Mo-N	4.2	1.79	0.0040	5.9	0.0053	0.821
<u>C</u> ree	Ru-N	3.7	2.02	0.0111	-2.4	0.0275	0.026
Sm ₁ -	Ru-Ru	2.3	2.69	0.0094	-2.4	- 0.0275	0.926
Ru _n /NC	Sm-N	6.3	2.43	0.0117	-0.7	0.0133	0.900
	Ru-N	4.0	2.06	0.0068	-2.4	0.0092	0.006
La ₁ -	Ru-Ru	2.1	2.68	0.0057	8.4	- 0.0082	0.906
Ru _n /NC	La-N	5.8	2.63	0.0097	9.3	0.0101	0.900

Table S1. The EXAFS fitting results of the M_1 -Ru_n/NC (M= Zn, Fe, Mo, Sm, La) catalysts.

CN is the coordination number; *R* is the distance between absorber and backscatter atoms; σ^2 is the Debye-Waller factor value; ΔE_0 is the inner potential correction; *R* factor indicates the goodness of the fit. A reasonable range of the structural parameters fitting parameters obtained by EXAFS spectroscopy are estimated as CN ± 20%; R ± 1%; σ^2 ± 20%; ΔE_0 ± 20%. S_0^2 was fixed between 0.700 and 1.000 during the data fitting.

Table S2. The output current density, turnover frequency (TOF), Faradaic efficiency (FE) and Ru loadings between the La_1 -Ru_n/NC catalyst and previously reported Rubased catalyst measured at -0.1 V vs. RHE for alkaline HER in 1M KOH electrolyte.

Sample	j (mA∙cm⁻²)	Ru loading (wt.%)	TOF (s⁻¹)	FE (%)	Reference
La ₁ -Ru _n /NC	-178	3.07	44.7	99.3	This work
					J Am Chem Soc
PtRu/CNT@CeO _{2-x}	-158	Pt-4.68	-		146 , 21453-21465
		Ru-2.61			(2024).
	150	6.02	0.41	00.1	Nano Res 16 ,
Ru/Na ⁺ , K ⁺ -PC	-158	6.02	8.41	99.1	8836-8844 (2023).
	154	20.0		00.2	SusMat. 4 , 166-
RuP/PNPC	-154	29.0	-	98.2	177 (2024).
	154	14 5			Adv Mater 36 ,
HEANC/C	-154	14.5	-	(2024). $(3.41 99.1) = 3.2 Nano Res 16, 8836-8844 (2023).$ $(3.41 99.1) = 3.2 SusMat. 4, 166-1, 177 (2024).$ $Adv Mater 36, 2309715 (2024).$ $Adv Mater 36, 2309715 (2024).$ $Angew Chem, Int Ed. 134, e202114160, (2022).$ $J Mater Chem A 9, 15648-15653, (2021).$	
					Angew Chem, Int
	145	2 4 7		00.2	Ed. 134 ,
Ru-a-CoNi	-145		e202114160		
					(2022).
					J Mater Chem A 9 ,
Ru/S-Ni ₂ P	-127	-	1.03	-	15648-15653
					(2021).
	110	1 ⊑			Appl Catal, B. 343 ,
LaCeO _x @NGr/Ru ₁	-119	1.5	-	-	123452 (2024).
					Angew Chem, Int
RuBi SAA/Bi@OG	114	22.2	25.7		Ed. 62 ,
	-114	32.3 25.7 - e	e202300879		
					(2023).
	104	1 0			ACS Sustainable
Ru/3DLNC-500	104	1.8	-	-	Chem Eng 12 ,

					5319-5331 (2024)
	100	0.04			Chem Eng J. 472 ,
Ru-NiO/CNTs	-100	0.94	-	-	144922 (2023).
	07	F 02			Adv Mater 35 ,
Ru/NC	-97	5.83	-	-	2301133 (2023).
					J Am Chem Soc
Ru SAs/WCx	ca89	1.26	-	-	146 , 4883-4891
					(2024).
Cu-Ru/RuSe ₂	aa 95		0.99		Adv Mater 35 ,
NSs/C	ca85	-	0.88	-	2300980 (2023).
					Angew Chem, Int
	-82				Ed. 136 ,
$Ru/ac-CeO_{2-\delta}$	-02	-	-	-	e202317622
					(2024).
	-77	10.0	9.9 3.68	58 -	Small. 20 ,
Ru _{0.18} Ni-LDH-A	-//	19.9			2311076 (2024).
Ru/α-MoC	72 /	7.65	39.2		Appl Catal, B. 318
κu/u-ivioc	-72.4	7.05	59.2		121867 (2022).
			-		J Mater Chem A
RuPd/C	-69.7	20			11 , 13783-13792
					(2023).
					Angew Chem, Int
$Ru/P-TiO_2$	ca69	_	_		Ed. 134 ,
	Ca03	_	_	-	e202212196
					(2022).
					Adv Energy Mate
Ru/d-NiFe LDH	-69	2.06	-	99.8	14 , 2400059
					(2024).
Ru/RuS₂@h-NSC	-67.5	14.6	-	-	Chin Chem Lett.

					34 , 107788 (2023).
	67	0.10	1.68		Chem Eng J. 426 ,
Ru-Co ₃ O ₄ -NiO-NF	-67	0.10	1.08	-	131300 (2021).
	<u> </u>	3.84		00 F	Appl Catal, B. 316 ,
Rulr@BCN	-66.4	5.64 -	98.5	121626 (2022).	
					Angew Chem, Int
	6F				Ed. 63 ,
Ru-CoP/CC	-65	-	-	-	e202400069
					(2024).
	62	0.46		00.2	Chem Eng J. 451 ,
Ru-Ni₃N	-63	0.46	-	99.2	138698 (2023).
				0.61 96.0	J Alloys Compd
Ru@Co ₂ P/CNFs	-59	-	0.61		968 , 171889
					(2023).
	F 7	2.01	1		Appl Surf Sci. 581 ,
Ru/CeO ₂ /C	-57	2.81	-		152256 (2022).
	50	2.45	4.03	06.0	Small. 17 ,
M-Co@Ru/NC	-56	2.15	4.05	96.0	2105231 (2021).
				-	Adv Powder
Pt/Ru NWs	-55	-	3.45		Mater. 3 , 100214
					(2024).
	53			07.5	J Energy Chem. 86
Pd@RuP	-53	-	-	97.5	510-517 (2023).
					J Mater Chem A
Ru/Co ₄ N/NF	-52	-	-	97.8	11 , 22147-22153
					(2023).
					Int J Hydrogen
Ru–MoS ₂ @PPy	-50.2	6.05	-	-	Energy 47 , 37850-
					37859 (2022).

					Adv Funct Mater
Ru NP-RuSA@CFN- 800	-50	-	11.1	99.0	33 , 2213058
800					(2023).
					Adv Energy Mater
V-SRCO	-48.4	-	-	-	13 , 2301779
					(2023).
					Chem Commun.
Ru@Ni₃B	-41	-	-	-	58 , 6741-6744
					(2022).
					Int J Hydrogen
Ru@Ti₃C₂Tx-NS	-38.9	-	-		Energy. 48 , 9163-
					9171 (2023).
	25	2.02			Adv Mater 32 ,
Ni ₅ P ₄ -Ru/CC	-35	3.83	-		1906972 (2020).
	22.6	20.2			Mater Today Phys.
Cu-RuS ₂ /Ru	-32.6	30.2		23 , 100625 (2022).	
					Nanoscale. 14,
PdRuTe	-29	52	-	-	14913-14920
					(2022).
5. 5N(02000	27	0.00	40.0		Appl Catal, B. 353 ,
RuBNC2000	-27	0.39	10.0	-	124088 (2024).
					J Colloid Interface
Ru/WO ₃ -W ₂ N/NC	-21	1.7	-	-	<i>Sci.</i> 636 , 618-626
					(2023).
					J Mater Chem A 9 ,
Ru/TiO ₂ -VO@C-X	-18	2.9	-	-	10160-10168
					(2021).
	47				Int J Hydrogen
Ru@CoP/CC-2	-17	-	-	-	Energy. 59 , 1205-

Catalyst	Ru loading (wt.%)	M loading (wt.%)
ZnO-Ru _n /NC	2.36	2.25
Fe ₂ O ₃ -Ru _n /NC	2.48	2.18
MoO ₃ -Ru _n /NC	2.54	2.53
Sm ₂ O ₃ -Ru _n /NC	2.47	2.62
La ₂ O ₃ -Ru _n /NC	2.42	2.56
Zn ₁ -Ru _n /NC	2.94	0.31
Fe ₁ -Ru _n /NC	2.89	0.30
Mo ₁ -Ru _n /NC	2.82	0.32
Sm ₁ -Ru _n /NC	2.75	0.41
La ₁ -Ru _n /NC	3.07	0.36

Table S3. The loading amount of the Ru or M (M=Zn, Fe, Mo, Sm, La) of the tested catalysts obtained by the ICP-OES measurement.

Table S4. The mass activity comparison between the La_1-Ru_n/NC catalyst and previously reported Ru-based catalyst at -0.05 V vs. RHE for alkaline HER performed in 1M KOH electrolyte.

Ru loading (wt.%)	Mass activity (A mg _{Ru} -1)	Reference
3.07	-19.7	This work
0.058	ca18	J Mater Chem A. 7 , 11038-11043 (2019).
0.36	ca13.5	Nat Commun. 15 , 6391 (2024).
1.25	-12.09	Nat Commun. 15 , 2218 (2024).
mg·cm ⁻²		
0.35	-12	Appl Surf Sci. 494 , 101-110 (2019).
1	-10.1	Nat Commun. 15 , 448 (2024).
6.3	-9.86	Chem Eng J. 495 , 153433 (2024).
0.61	ca -97	Angew Chem, Int Ed. 134 , e202212196
0.01	ca. <i>5.7</i>	(2022).
12.19	-9.33	J Alloys Compd. 967 , 171667 (2023).
7.98	-9.3	Nat Commun 15 , 6741 (2024).
	0 5	Angew Chem, Int Ed. 62 , e202300879
-	-8.5	(2023).
3.8	ca8.4	Nat Catal. 7 , 441-451 (2024).
5.55	-7.8	Nano Energy. 58 , 1-10 (2019).
1	-7.5	Adv Mater 33 , 2006965 (2021).
0.7	6.04	Energy Environ Sci. 17 , 1540-1548
A@NiFe PPc 0.7 -6.9		(2024).
0.18	-6.4	J Mater Chem A 8 , 3203-3210 (2020).
3.1	-6.3	Nano Res 16 , 8836-8844 (2023).
0.4	-5.8	Appl Catal, B. 353 , 124088 (2024).
3.9	-5.32	Nat Commun 15 , 7179 (2024).
11.9	-5.2	ACS Catal. 10, 11751-11757 (2020).
	loading (wt.%) 3.07 0.058 0.36 1.25 mg·cm ⁻² 0.35 1 6.3 0.61 12.19 7.98 - 3.8 5.55 1 0.7 3.8 5.55 1 0.7 3.8 5.55 1 0.7 3.8 5.55 1 0.7 3.8 5.55 1 0.7 0.18 3.1 0.4 3.9	loading (wt.%) activity (A mg _{Ru} .1) 3.07 -19.7 0.058 ca18 0.36 ca13.5 1.25 -12.09 mg.cm ⁻² -12.09 0.35 -12 1 -10.1 6.3 -9.86 0.61 -9.33 7.98 -9.3 7.98 -9.3 3.8 ca8.4 5.55 -7.8 3.8 ca8.4 5.55 -7.8 1 -7.5 0.7 -6.94 3.1 -6.3 0.4 -5.8 3.9 -5.32

RuCo@Ru _{sa} Co _{sa} - NMC	1.43	-4.85	Adv Funct Mater 33 , 2301804 (2023).
Ordered Ru-Ni	7.08	-4.83	Chem Eng J. 487 , 150457 (2024).
Ru ₂ P/WO ₃ /NPC	3.4	-3.95	Angew Chem, Int Ed. 133 , 4156-4162 (2021).
Ir-Ru@C	4.3	ca3.1	Appl Catal, B. 358 , 124422 (2024).
Ru-NPs/SAs@N- TC	0.46	ca2.56	Adv Funct Mater 30 , 2003007 (2020).
Ru SAs-SnO ₂ /C	3.99	-2.33	Angew Chem, Int Ed. 61 , e202209486 (2022).
Ru/d-N-CNT	25 ug∙cm⁻²	-2.3	Nano Res 17 , 5261-5269 (2024).
Ru SAs/N-Mo ₂ C	2.39	-1.92	Appl Catal, B. 277 , 119236 (2020).
Ru ₁ -Mo ₂ C	34 ug∙cm⁻²	-1.75	Energy Environ Sci. 17 , 1397-1406 (2024).
Ru/Mo ₂ C/MoO ₂	10.78	-1.74	Adv. Mater. (2024), 2410039. https://doi.org/10.1002/adma.2024100 39.
Ru@Cu-TiO₂/Cu	52 ug∙cm⁻²	-1.7	J Am Chem Soc 145 , 21419-21431 (2023).
HTS-Ru-NCs/TiN	16	-1.68	Adv Mater 36 , 2403525 (2024).
Ru/Ru _x Fe _{3-x} O ₄	17.3	-1.577	Nano Lett 24 , 1015-1023 (2024)
Ru/Zn-NC	2.74	-1.56	Adv Mater 36 , 2308798 (2024).
Ni _{cluster} -Ru NWs	-	-1.42	Energy Environ Sci. 14 , 3194-3202 (2021).
Ru ADC	4.25	-1.25	Small. 17 , 2101163 (2021).
S-RuP@NPSC- 900	0.8	-0.87	Adv Sci. 7 , 2001526 (2020).
RuP/Ru@CNS	48.3	-0.724	Adv Sci. 11, 2309869 (2024).

Ru-CoP/CC	-	-0.7	Angew Chem, Int Ed. 63 , e202400069 (2024).			
Ru/Ni/WC@NPC	4.13	-0.6	Adv Energy Mater 12 , 2200332 (2022).			
	6.28	-0.43	J Mater Chem A 10 , 16236-16242			
Ru/B–Ni ₂ P/Ni ₅ P ₄	0.28	-0.43	(2022).			
CNT-V-Fe-Ru	17.84	-0.4	ACS Catal. 13 , 49-59 (2023).			
Ru@RuP/PC-2	42.5	-0.32	J Mater Chem A 7 , 5621-5625 (2019).			
	ug∙cm ⁻²	-0.52	5 WILLER CHEIN A 7, 5021-5025 (2019).			
Ru/Ru,Fe-CoP	10.2	-0.265	Appl Catal, B. 352 , 124002 (2024).			
Sample Fe₅Ru	223	-0.262	J Colloid Interface Sci. 659 , 697-706			
Sample residu	ug∙cm ⁻²	-0.202	(2024).			
Ru-CrN/NC	8.7	-0.26	J Mater Chem A 12 , 8291-8301 (2024).			
Ru/MoC@BNC	4	-0.128	J Mater Chem A 12 , 19462-19469			
	4	-0.128	(2024).			
Ru@Ni-MOF	2.3	-0.125	Angew Chem, Int Ed. 60 , 22276-22282			
	2.5	-0.125	(2021).			
c-RP/IP HNT/C	37.92	-0.054	Adv Energy Mater 14 , 2401426 (2024).			
Ru ₃ -Ni NPs	32.11	-0.012	J Colloid Interface Sci. 678 , 272-280			
	32.11	-0.012	(2025).			

Sample	M _{noble} loading (ug∙cm ⁻²)	η@0.5 A∙cm⁻²(V)	η@1.0 A∙cm⁻²(V)	Reference
La ₁ -Ru _n /NC	30	1.62	1.68	This work
				Angew Chem, Int
	1210	1.65	1.60	Ed. 136 ,
Ru-LC-Ni(OH) ₂	1210	1.65	1.69	e202317220
				(2024).
Ru-Ga _{sa} /N-C	80	1.62	1.74	Nat Commun 15 ,
Ru-Ga _{SA} / N-C	Ru-Ga _{SA} /N-C 80 1.02 1.74	6741 (2024).		
Ru@Cu-				J Am Chem Soc
TiO ₂ /Cu	52	1.66	1.77	145 , 21419-21431
110 ₂ /Cu				(2023).
				Adv Funct Mater
R-NF-Pt	36.9	1.67	1.77	33 , 2211273
				(2023).
				Adv Energy Mater
MoO ₂ @Ru NT	158	1.63	1.78	13 , 2301492
				(2023).
Ru/Zn-N-C	1000	1.69	1.79	Adv Mater 36 ,
Ru/ZII-N-C	1000	1.05	1.79	2308798 (2024).
	260	1 67	1.0	Appl Catal, B. 343 ,
$Ru-Ru_2P/V_2CT_x$	360	1.67	1.8	123517 (2024).
		1 70	1 07	Nat Commun 13 ,
CI-Pt/LDH	- 1.72	- 1.72 1.87	1.87	6875 (2022).
	1154	1 7	1.0	Nat Commun. 15 ,
UP-RuNi _{SAs} /C	1154	1.7	1.9	2218 (2024).
Pt-AC/Cr-N-C	50	1.78	1.9	J Am Chem Soc

Table S5. The comparison of the cell voltage to afford 1.0 $A \cdot cm^{-2}$ or 0.5 $A \cdot cm^{-2}$ current density and the Ru usage amount between the NF||La₁-Ru_n/NC and previously reported assembly catalysts.

				145 , 21432-21441
				(2023).
Pt-Ru SWNT	34	1.81		Appl Catal, B. 315 ,
PL-RU SVVIVI	54	1.81	-	121541 (2022).
	80	1.86	Appl Catal, B. 32 7	
Ru/NDC-4	80	1.80	-	122466 (2023).
	50	1.86	Nat Commun 1.98	Nat Commun 14 ,
Turing PtNiNb	50	1.00	1.98	5389 (2023).
		1.69	2	Nat Commun 15 ,
Ru NPs/TiN	-	1.09	2	6391 (2024).
		1.76	4.76 2.04	Nat Commun 14 ,
PtC60	562.5	1.70	2.01	1711 (2023).
r-Ru-Ni/NiO				J Colloid Interface
	107	1.85	2.03	<i>Sci.</i> 664 , 704-715
				(2024).

Supplementary Note 1

The description of the spectroscopic characterizations of the M_xO_y -Ru_n/NC catalysts and the M_1 -Ru_n/NC (M=La, Sm, Mo, Fe, Zn) catalysts.

To begin with, as shown in Fig. 3a, we use the Zn LMM Auger measurement to examine the ZnO-Ru_n/NC catalyst because of the severe overlap of Zn 2p XPS peaks between metallic Zn and ZnO.⁸ The Zn LMM spectrum of the ZnO-Ru_n/NC catalyst indicates that the Zn species therein with a kinetic energy value of about 988 eV are assigned to the ZnO according to previous report.^{9, 10} Furthermore, the X-ray photoelectron spectroscopy technique is employed to characterize the oxidation state of M in other M_xO_y -Ru_n/NC catalysts. As suggested in Fig. 3f, the binding energies of Fe $2p_{3/2}$ (711 eV) and Fe $2p_{1/2}$ (724.6 eV) of the Fe₂O₃-Ru_n/NC catalyst are in good agreement with that of Fe_2O_3 .¹¹ Fig. 3k indicates that the binding energies for the Mo $3d_{5/2}$ (232.4 eV) and the Mo 3d_{3/2} (235.5 eV) are in line with that of the MoO₃.^{12, 13} Fig. 3p demonstrates that the binding energies for the Sm $3d_{5/2}$ (1083.8 eV) and the Sm $3d_{3/2}$ (1110.8 eV) are attributed to the Sm₂O₃.¹⁴ Fig. 3u displays that the binding energies for the La 3d_{5/2} (835.1 eV) and the La $3d_{3/2}$ (852.1 eV) agrees with that of the La₂O₃.^{15, 16} These characterizations coupled with the microscopic measurements testifies the united M_xO_y nanocluster and the Ru nanocluster structures of the M_xO_y -Ru_n/NC catalysts. Fig. 3b,c are the Ru K-edge XAFS spectra and the Fourier transforms of the Ru K-edge EXAFS spectra of the Zn_1 -Ru_n/NC catalyst and the reference Ru foil and RuO₂, respectively. Fig. 3d,e are the Zn K-edge XAFS spectra and the Fourier transforms of the Zn K-edge EXAFS spectra of the Zn₁-Ru_n/NC catalyst and the reference Zn foil and ZnO, respectively. It is found that the Zn species in the Zn_1 -Ru_n/NC catalyst exist in the form of single atom with four N-Zn coordination number as also suggested in Table S1 by the best fitted results while the Ru are in the form of small nanoclusters. Similar XAFS characterizations at the Fe K-edge (Fig. 3i-j), Mo K-edge (Fig. 3n-o), Sm L-edge (Fig.3s-t), and La L-edge (Fig. 3x-y) also confirm the single atom nature of the Fe, Mo, Sm, and La in the Fe₁-Ru_n/NC catalyst, Mo₁-Ru_n/NC catalyst, Sm₁-Ru_n/NC catalyst and La₁-Ru_n/NC catalyst, respectively. These results solidly show the M single atom and Ru

nanocluster nature of the M_1 -Ru_n/NC catalyst. Because of this, the M_1 -Ru_n/NC catalysts and the M_xO_y -Ru_n/NC catalysts can ideally represent for the M_xO_y -Ru₁₃ model and the M_1 -Ru₁₃ model, respectively.

Supplementary References

- 1. Z. Wang, W. A. Perera, S. Perananthan, J. P. Ferraris and K. J. Balkus, Jr., *ACS Omega*, 2018, **3**, 13913-13918.
- 2. B. Hu, X. Kang, W. Chen, F. Yang and S. Hu, CrystEngComm, 2011, 13, 1755-1758.
- 3. Y. Shi, H. Li, L. Wang, W. Shen and H. Chen, ACS Appl. Mater. Interfaces, 2012, 4, 4800-4806.
- 4. N. Kiomarsipour and R. Shoja Razavi, *Superlattices Microstruct.*, 2012, **52**, 704-710.
- 5. J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew and J. Sun, *J. Phys. Chem. Lett.*, 2020, **11**, 8208-8215.
- E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150.
- 7. P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- H. Zhou, X. Yang, L. Li, X. Liu, Y. Huang, X. Pan, A. Wang, J. Li and T. Zhang, ACS Catal., 2016, 6, 1054-1061.
- Y. Zhang, N. Lin, Y. Li, X. Wang, H. Wang, J. Kang, R. Wilks, M. Bär and R. Mu, *Sci. Rep.*, 2016, 6, 23106.
- P. Kumar, M. C. Mathpal, F. Goutaland, S. A. Hevia, M. M. Duvenhage, W. D. Roos and H. C. Swart, *Mater. Today Chem.*, 2024, 42, 102371.
- 11. T. Yamashita and P. Hayes, Appl. Surf. Sci., 2008, 254, 2441-2449.
- 12. P. A. Spevack and N. S. McIntyre, J. Phys. Chem., 1993, 97, 11020-11030.
- Y. L. Leung, P. C. Wong, M. Y. Zhou, K. A. R. Mitchell and K. J. Smith, *Appl. Surf. Sci.*, 1998, 136, 178-188.
- 14. T.-D. Nguyen, D. Mrabet and T.-O. Do, J. Phys. Chem. C, 2008, 112, 15226-15235.
- B. M. Reddy, P. M. Sreekanth, E. P. Reddy, Y. Yamada, Q. Xu, H. Sakurai and T. Kobayashi, *J. Phys. Chem. B*, 2002, **106**, 5695-5700.
- V. Patil, K. Agrawal, V. Barhate, S. Patil and A. Mahajan, Semicond. Sci. Technol., 2019, 34, 034004.