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Experimental Section
Materials

All chemicals were used as received without further purification. Rubidium iodide
(RbI, 99.99%), cesium iodide (Csl, 99.99%), dimethylformamide (DMF, 99.8%,
anhydrous), dimethyl sulfoxide (DMSO, >99.9%, anhydrous), isopropanol (IPA,
99.5%), ethanol (99.5%), and anisole (99%) were purchased from Sigma-Aldrich.
Anisole (99.7%, anhydrous) was purchased from Aladdin. Lead iodide (Pbl,, 99.99%)
was purchased from Advanced Election Technology Co. Ltd. Formamidinium iodide
(FAI 99.9%) and methylammounium bromide (MABr, >99.5%) were purchased from
Greatcell Solar Materials (Australia). Phenyl-C61-butyric acid methyl-ester (PCgBM,
99%), 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP, 99.5%),
phenethylammonium iodide (PEAI 99.5%), and lead bromide (PbBr,, 99.5%) were
purchased from Xi’an Yuri Solar Co. Ltd. ([2-(3,6-dimethoxy-9Hcarbazol-9-
yl)ethyl]phosphonic acid) (MeO-2PACz, >98%) and trimethyl phosphate (TP, >98.0%)
were purchased from Tokyo Chemical Industry (TCI). Dimethyl acetonylphosphonate
(DMAPA, 95%) was purchased from Macklin.
Device Fabrication

Perovskite solar cells were fabricated on cleaned and patterned ITO glass
substrates (SuZhou ShangYang Solar Technology Co. Ltd.). The ITO substrates were
treated by ultraviolet-ozone (UVO) for 15 min before being transformed into the Nj-
filled glovebox. The glove box environment was controlled to maintain oxygen levels
below 0.1 ppm and relative humidity (RH) below 1%, with temperature maintained at
22 + 2 °C. The diluted IPA solution of MeO-2PACz (0.5 mg/mL) was spin-coated on
the ITO substrate at 3000 rpm for 30 s, followed by annealing at 100 °C for 10 min.
The perovskite precursor solution was prepared by mixing Csl (19.5 mg), RbI (15.9
mg), MABTr (8.4 mg), FAI (219.5 mg), Pbl, (656.9 mg), and PbBr, (27.5 mg) in 1 mL
of a mixed solvent (DMF: DMSO = 4:1, v/v), which was stirred for 2 h before use. For
the ligand-modified target perovskite solution, each ligand was added directly to the
precursor. The perovskite solution was filtered with 0.22 um PTFE filter. The

perovskite precursor solution was spin-coated onto the substrate at 1000 rpm for 10 s,
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and 3000 rpm for 40 s. 110 puL of anisole antisolvent was dropped on top of the spinning
substrates in the remaining 10 s of the second stage. Sequentially, the perovskite film
was annealed at 110 °C for 20 min. After the perovskite film was cooled down to room
temperature, 1 mg/mL of PEAI solution was deposited via spin-coating at 5000 rpm for
30 s followed by annealing at 100 °C for 5 min. Then, 15 mg/mL of PCs;BM in CB
solution and 0.5 mg/mL of BCP in IPA solution were sequentially spin-coated at 1500
rpm for 30 s and 6000 rpm for 40 s. Finally, 100 nm of Ag electrode was thermally
deposited by evaporation.
Characterizations

The top-view and the cross-sectional SEM images were measured by using a
scanning electron microscopy (FEI inspect £50). Grazing-incidence wide-angle X-ray
scattering (GIWAXS) measurements were conducted at the BL14B1 beamline of
Shanghai Synchrotron Radiation Facility (SSRF). The antisolvent was dripped on the
spinning film at 40 seconds, after another 10 seconds, the spinning process was stopped
and the in-situ thermal annealing treatment on the wet film was started immediately.
Raising the temperature from 25 to 110 °C with a linear temperature ramp of 1 °C/s.
The GIWAXS data was collected every 2 second. In-situ UV-vis absorption spectra
were characterized with a home-built dynamic spectrometer system in ambient
conditions, and all the measurements were performed on ITO substrates. In-situ PL
spectra were obtained using an Ocean Optics’ spectrometer with 365 nm UV exciter.
The in-siu PL signal of the perovskite films was detected by a receiver positioned at a
distance of 1 cm from the sample during annealing. The annealing temperature was set
at 110 °C for both the in-situ UV-vis absorption and in-situ PL. measurements. Kelvin
probe force microscopy (KPFM) images were obtained using an atomic force
microscope (MultiMode 8, Bruker). The depth profile of the perovskite film on the ITO
substrate was recorded using ToF-SIMS (Ion-ToF-SIMS 5) with negative polarity. The
pulsed primary Bi* ion source was operated at 30 keV, 1 pA, and 7.12+E14 lons/cm?
on a 300*300 um? area to bombard the sample surface to produce secondary ions. The
steady PL spectra and time-resolved PL decay measurements were performed using an

FLS980 Series of Fluorescence Spectrometers. X-ray diffraction (XRD) patterns were
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attained on a Bruker D8 Advance X powder diffraction system using Cu Ka radiation
source (A= 1.54 A) operating at 40 kV and 40 mA. XPS measurements were performed
on a PHI 5000 Versaprobe III X-ray photoelectron spectrometer. The FTIR
spectroscopy was measured by Fourier Transform Infrared Spectrometer (IR-2000,
Jingtuo Instrument Technology Co. Ltd.). The UV-Vis spectra were measured by
Ultraviolet-Visible Spectrometer (UV-2600i, Shimadzu). The TPC, TPV, IMVS,
IMPS, EIS, and Mott-Schottky plots were obtained by Fluxim Paios Spectrometer. The
obtained impedance spectra were fitted with Z-View 4 software.

The current-density (J-}) measurement was performed via the solar simulator (SS-
X50, Enlitech) along with AM 1.5G spectra whose intensity was calibrated by the
certified standard silicon solar cell (SRC-2020, Enlitech) at 100 mW/cm?. The J-V
curves were measured by forward (-0.1 V to 1.2 V forward bias) or reverse (1.2 V to -
0.2 V) scans with a voltage step of 20 mV and a delay time of 100 ms for each point.
The active area of a PSC is 0.09 cm?. The J-V curves were obtained by masking the cell
with a metal mask of 0.09 cm? in area. The external quantum efficiency (EQE) data
were obtained by using the solar-cell spectral-response measurement system (QE-R,
Enlitech).

The unencapsulated devices for long-term stability measurement were stored in a
N,-filled glovebox under dark (temperature is about 25 °C). After various periods of
time, the J-V measurements were performed.

The unencapsulated devices for thermal aging evaluation were placed under a 65
°C hotplate in a N,-filled glovebox. The chamber atmosphere (RH) is maintained at less
than 1%. After various periods of time, the J-V curves were collected.

The dynamic MPP tracking of the unencapsulated devices were carried out by a
multi-channels solar cells stability test system with an LED light source (6500K, white-
light LED array) calibrated to equivalent one sum illumination (Wuhan 91PVKSolar
Technology Co. Ltd, China).

Theoretical Calculation
All the calculations are performed in the framework of the density functional

theory with the projector augmented plane-wave method, as implemented in the Vienna
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ab initio simulation package.! The generalized gradient approximation proposed by
Perdew-Burke-Ernzerhof (PBE) is selected for the exchange-correlation potential.? The
cut-off energy for plane wave is set to 480 eV. The energy criterion is set to 107# eV in
the iterative solution of the Kohn-Sham equation. All the structures are relaxed until
the residual forces on the atoms have declined to less than 0.05 eV/A. To avoid

interlaminar interactions, a vacuum spacing of 20 A is applied perpendicular to the slab.

The binding energy Ey;,q is expressed as:
EBinding =E4, 5~ E - Ep

where £

4+ B is the total energy of slab A model with B molecule, Eyis the energy of a
A slab, and Eg is that for a B molecule.

Here, we define 2P =Pa+5~Pa~Ps a5 the charge density difference of A+B
heterostructure, where P4+ 8, P4, and PBare the charge densities of A+B heterostructure,

isolated A and B slabs, respectively.

The adsorption energy Eads is expressed as

AEads:EA+B - EA - EB

where Eyvp is the total energy of slab A model with B adsorption, Ey is the energy of

a A slab, and Eg 1S that for a B molecule.
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Figure S1. FTIR spectra of pure ligands and the Rb0.05CS()'()5MA0.05FAO'gSPb(Io_95BI‘0.05)

perovskite film with ligand modifications: (a) DMSO and the pristine perovskite films;

(b) ACT, the pristine perovskite film, and the perovskite with ACT addition; (¢) TP,

the pristine perovskite film, and the perovskite with TP addition. (d) DMAPA, the

pristine perovskite film, and the perovskite with DMAPA addition.
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Figure S2. Calculated charge density difference of (a) ACT, (b) TP, and (c) DMAPA
ligands onto the FAPDI; surface with Pb-I termination. The green and yellow represent

electron depletion and electron accumulation with the isosurface value of 0.0005

e/Bohr?, respectively.
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Figure S3. XRD patterns of perovskite films deposited on ITO/MeO-2PACz substrates.
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Figure S4. The detailed analysis process of the grain sizes of perovskite films with

different ligands.
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Figure S5. (a) UV-vis absorption plots and (b) the corresponding Tauc plots of the

control and treated perovskite films.
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Figure S6. KPFM images of surface potential for (a) the control, (b) ACT-, (c) TP-,
and (d) DMAPA-based perovskite films.
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Figure S7. TRPL spectra of the control and treated perovskite films on quartz substrate.
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Figure S8. SCLC curves for the electron-only devices based on (a) control, (b) ACT-,
(c) TP-, and (d) DMAPA-based perovskite films (employing SnO, and PCBM as the

bottom and top electron transporting materials).
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Figure S12. The champion J-V curves for the device treated with ACT + TP mixture.
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Table S1. TRPL lifetimes of the control and treated perovskite films fitted from the

decay curves by a biexponential model.

Substrate A, T A, T Tave
(ns) (ns) (ns)
Control 0.44 28.41 0.43 3393.90 3364.87
ACT 0.32 66.52 0.58 4704.44 4668.19
TP 0.30 101.82 0.64 5279.35 5232.91

DMAPA 0.33 120.91 0.75 6343.48 6292.60
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Table S2. Detailed PV parameters for the control devices.

Voc FF Jsc PCE
Device

V) (o) (mA/cm?) (o)
1 1.13 77.58 24.94 21.88
2 1.13 79.70 24.52 22.08
3 1.12 78.05 25.22 22.08
4 1.13 79.24 24.85 22.22
5 1.13 78.85 24.69 21.97
6 1.14 78.70 24.64 22.12
7 1.13 78.51 24.99 22.15
8 1.13 77.28 25.26 22.01
9 1.14 79.74 24.92 22.67
10 1.14 78.96 24.93 22.53
11 1.14 78.48 24.73 22.21
12 1.13 79.93 24.97 22.56
13 1.12 77.47 25.07 21.84
14 1.15 77.44 24.81 22.00
15 1.14 79.26 25.29 22.87
16 1.13 78.48 24.73 21.99
17 1.13 78.96 24.62 22.06
18 1.13 77.75 25.06 22.08
19 1.13 79.61 24.90 22.41
20 1.13 79.24 24.85 22.22
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Table S3. Detailed PV parameters for the ACT-based devices.

Voc FF Jsc PCE
Device

V) (o) (mA/cm?) (o)
1 1.14 83.30 24.94 23.59
2 1.14 82.84 25.06 23.70
3 1.15 82.13 25.37 2391
4 1.13 82.10 25.15 23.39
5 1.13 82.50 25.12 23.44
6 1.14 82.57 25.03 23.52
7 1.14 83.08 24.92 23.60
8 1.14 81.77 25.36 23.61
9 1.15 81.72 25.43 23.80
10 1.14 81.04 25.23 23.37
11 1.14 81.66 25.08 23.38
12 1.14 81.70 25.44 23.64
13 1.14 81.91 25.39 23.79
14 1.14 81.60 25.25 23.47
15 1.14 82.47 25.20 23.70
16 1.15 80.63 24.92 23.12
17 1.14 81.65 25.08 23.43
18 1.14 80.34 25.12 23.00
19 1.14 83.29 25.43 24.17
20 1.15 82.64 25.32 23.99
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Table S4. Detailed PV parameters for the TP-based devices.

Voc FF Jsc PCE
Device

V) (%) (mA/em?) (%)
1 1.15 83.29 25.72 24.71
2 1.15 82.93 25.37 24.23
3 1.15 82.66 25.43 24.15
4 1.16 83.62 25.51 24.75
5 1.16 83.00 25.56 24.54
6 1.15 82.74 25.41 24.18
7 1.15 82.69 25.73 24.50
8 1.15 83.19 25.52 24.40
9 1.15 82.60 25.73 24.48
10 1.16 83.70 25.57 24.77
11 1.16 83.66 25.57 24.77
12 1.16 82.41 25.38 24.22
13 1.15 83.95 25.55 24.63
14 1.15 82.29 25.55 24.23
15 1.15 83.34 25.40 24.40
16 1.15 83.60 25.47 24.46
17 1.15 83.67 25.50 24.61
18 1.15 83.85 25.43 24.59
19 1.15 83.33 25.26 24.18
20 1.14 83.59 25.40 24.28
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Table S5. Detailed PV parameters for the devices modified by ACT and TP mixture.

Voc FF Jsc PCE
Device

V) (%) (mA/cm?) (%)
1 1.15 83.38 25.62 24.52
2 1.15 83.85 25.86 25.01
3 1.15 82.44 25.71 24.45
4 1.15 83.19 25.79 24.60
5 1.16 84.35 25.05 24.46
6 1.15 84.22 25.83 25.02
7 1.16 82.58 25.59 24.43
8 1.15 82.80 25.60 24.38
9 1.15 84.23 25.81 25.06
10 1.15 82.70 25.59 24.44
11 1.15 84.62 25.43 24.82
12 1.15 82.06 25.85 24.47
13 1.15 83.83 25.59 24.72
14 1.16 83.29 25.66 24.88
15 1.16 84.04 25.81 25.11
16 1.15 84.22 25.86 25.03
17 1.16 84.16 25.75 25.03
18 1.15 84.70 25.66 25.07
19 1.15 84.44 25.79 25.09

20 1.16 84.34 25.65 25.02
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Table S6. Detailed PV parameters for the DMAPA-based devices.

Voc FF Jsc PCE
Device

V) (%) (mA/em?) (%)
1 1.18 83.34 25.70 25.19
2 1.17 83.59 25.60 25.12
3 1.17 83.58 25.82 25.24
4 1.17 83.93 25.81 25.38
5 1.17 83.33 25.70 25.02
6 1.17 83.86 25.55 25.01
7 1.18 83.25 25.54 24.99
8 1.18 84.04 25.75 25.45
9 1.17 84.04 25.75 25.42
10 1.17 83.63 25.84 25.28
11 1.17 83.70 25.69 25.19
12 1.17 83.42 25.67 24.98
13 1.17 83.52 25.80 25.21
14 1.16 84.44 25.58 25.12
15 1.17 83.78 25.78 25.30
16 1.17 83.84 25.81 25.35
17 1.17 83.92 25.87 25.40
18 1.17 84.64 25.86 25.59
19 1.17 83.07 25.63 24.94
20 1.17 83.47 25.71 25.01
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Table S7. Photovoltaic parameters for the best-performing control and ligand-based

devices in Figure 3d.

Jsc Voc FF PCE HI
(mA/cm?) V) (%) (%) (%)
Control-Reverse 25.28 1.14 79.26 22.87
Control-Forward ~ 25.17 1.14 78.57 22.50 160
ACT-Reverse 25.37 1.15 82.13 2391
ACT-Forward 25.09 1.14 82.26 23.57 1
TP-Reverse 25.57 1.16 83.66 24.77
TP-Forward 25.80 1.15 82.47 24.43 13
DMAPA-Reverse  25.86 1.17 84.64 25.59
DMAPA-Forward  25.93 1.17 83.81 25.40 072

HI (Hysteresis index) = (PCEReyerse- PCErorward)/PCEReverse X 100%

Table S8. EIS parameters of the control and DMAPA-based devices in Figure S16.

Rs Rtr Cl Rrec C2
(Ohm) (Ohm) (F) (Ohm) (F)
Control 20.13 24615 6.44E-09 2.58E+07 1.29E-08
DMAPA 7.82 21500 6.74E-09 5.12E+07 1.24E-08
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