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General information

Materials

Fluorine doped tin oxide coated (FTO) glasses (14 Q/sq) were purchased from Advanced Election
Technology Co., Ltd. Methylammonium iodide (MAI, 99.5%), cesium iodide (Csl, 99.5%),
methylammonium chloride (MACI, 99.5%), lead iodide (Pbl,, >99.5%) and formamidinium iodide
(FAL 99.5%), were purchased from Xi’an Yuri Solar Co., Ltd. [2-(3,6-Dimethoxy-9H-carbazol-9-
yl) ethyl]phosphonic Acid (MeO-2PACz, 99.5%) were purchased from TCI. C4 and BCP were
obtained from were purchased from Vizuchem Co., Ltd. Dimethylformamide (DMF, 99.8%),
dimethyl sulfoxide (DMSO, 99.8%), 2-Methoxyethanol (2-Me, 99.8%), ethyl acetate (EA, 99.8%)
from Alfa Aesar Chemical Co., Ltd. Diallyl disulfide (DAD) were purchased from Beijing

InnoChem Science & Technology Co., Ltd.
Fabrication of PSCs and modules

FTO glass substrate was washed sequentially by detergent, deionized water, acetone and ethanol for
25 min with ultrasound devices. The cleaned substrate was dried in the drying cabinet for 2 h and
treated by plasma for 20 min, then transferred into a nitrogen glove box quickly. The MeO-2PACz
(0.5 mg/mL in 2-Me) was fabricated on the FTO substrate by spin-coating at 3000 rpm for 30 s,
followed by annealing at 100 °C for 10 min. The perovskite precursor solution was prepared by
dissolving completely 1.5 M Csg osMAg 10FA¢ gsPbl; (in which FAI, MAI, FAI Csl, Pbl, and excess
MACI (5 mol%) with and without DAD) in a mixed solvent of DMF and DMSO with a volume
ratio of 4:1. The 70 pL of perovskite precursor was spin-coated onto HTL at 1000 rpm for 10 s and
5000 rpm for 30 s respectively and 150 uL. EA was dropped on the film at 5 s before the end of
procedure (spin coater from Jiangyin J. Wanjia Technology Co., Ltd.). After that the film was
annealed at 120 °C for 20 min and completely cooled. Cg (25 nm) and BCP (8 nm) was thermally
evaporated in a vacuum chamber (<5x10* Pa). Finally, Ag electrode (80 nm) was deposited by
thermal evaporation in a vacuum chamber (<5x10-4 Pa). All these processes were conducted in the
glove box protected by N, with O, and H,O contents kept below 0.01 ppm.

The scalability of the DAD molecule for defect passivation and dynamic healing was validated
by fabricating the 6x6 cm? inverted module. 250 pL perovskite precursor solution (DAD, 0.75

mg/mL) was drop-cast onto a substrate coated with a hole transport layer at 6000 rpm for 30 s,



followed by the addition of 400 puL of antisolvent EA during the last 5 s of the process. The wet film
was then transferred to a hotplate and annealed at 120 °C for 30 min. Next, Cgo (25 nm), BCP (8
nm), and Cu (150 nm) were sequentially deposited via thermal evaporation under high vacuum
(<5%10* Pa). The laser scribing process followed the parameters shown in Fig. S33, resulting in a

large-area module with an aperture area 26.78 cm? and a geometrical fill factor (GFF) of 96.3%.
Characterization

Fourier transform infrared (FTIR) data were gained by a FTIR spectrometer (Bruker, Tensor II).
The Raman data were obtained from Thermo DXR2xi. Ultraviolet-visible (UV-vis) spectra were
obtained by a UV-vis spectrometer (Shimadzu UV-2550). The top-view images of perovskite
samples and cross-sectional images of devices were monitored by scanning electron microscopy
(SEM, Hitachi Regulus8100). Depth resolved GIXRD were characterized using a Rigaku Smart Lab
five-axis X-ray diffractometer at 45 kV and 200 mA, equipped with Cu Ka radiation (A = 1.54050
A), parallel beam optics and a secondary graphite monochromator. X-ray photoelectron
spectroscopy (XPS) and Ultraviolet Photoelectron Spectroscopy (UPS) data were collected by a
Axis Ultra DLD Kratos AXIS SUPRA. The Photoluminescence (PL) and time-resolved
photoluminescence (TRPL) spectra were obtained by a Pico Quant Fluo Time 300 fluorescence
spectrometer. The external quantum efficiency (EQE) of decives was measured by a Enlitech EQE
measurement system (CEL-QPCE1000). J-V curves characteristics were measured using solar
simulator (Oriel 67005, 150 W) with irradiation intensity of 100 mW c¢cm? AM 1.5G standard light.
J-V curves characteristics of perovskite modules were measured using solar simulator (Newport,
94063 A) with irradiation intensity of 100 mW c¢cm™2 AM 1.5G standard light. The electrochemical
workstation (Chenhua CHI660E) was employed to obtain electrochemical impedance spectroscopy
(EIS) and Mott-Schottky (MS) analysis. The in-situ X-ray diffraction profile was gained from
suchoo EVASTAR instrument and technology 1td. The 3™ Synchrotron radiation light source was
used for glancing incidence wide-angle X-ray scattering (GIWAXS). The conductive atomic force
microscopy (C-AFM, Bruker Dimension ICON) was taken to obtain the current mapping image.
The particle size distribution of the precursor solution was obtained by dynamic light scattering
(DLS, Malvern Zetasizer Nano ZS90). TOF-SIMS (Tescan AMBER) spectrometer was used for

depth profile analysis of perovskites with 30 KV and 30 pA. The operational stability tests for the



unencapsulated PSCs were performed at the maximum power point (MPP) under constant
illumination using a 1-sun equivalent white-light LED array (Multi-Channels Solar Cells Stability
Test System, Wuhan 91PVKSolar Technology Co. Ltd, China). For the P1-P3 laser-patterning lines
were according to our previous works.!3 Transient photovoltage (TPV) and transient photocurrent

(TPC) for PSCs were measured using a ZAHNE MESSSYSTEME (Instrument model: PP211).
DFT Calculation

The computational framework utilized in this study is based on first-principles density functional
theory (DFT) calculations. Specifically, the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional under the generalized gradient approximation (GGA) is employed. Self-consistency of
the electronic energy is achieved when the energy variation falls below 10~ eV. For the evaluation
of defect and adsorption energies, the Pbl,-terminated supercell is expanded to a 3x3x1]
configuration, with the energy cutoff adjusted to 500 eV. A force tolerance of 0.03 eV Al is
enforced during simulations. To prevent artificial interactions, a vacuum layer of 30 A is introduced
perpendicular to the structural plane for surface models. The geometry optimization proceeds until

the energy variation per atom stabilizes below 0.05 eV A-!, ensuring structural convergence.*
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Fig. S1. (a) Schematic diagram of the intramolecular chemical rearrangement process. (b) Chemical

structure and electrostatic potential energy of AD molecule.
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Fig. S2. FITR spectra of the DAD liquid before and after anneal with different duration.
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Fig. S3. (a) Full and (b) regional 'H NMR spectra of DAD before and after anneal with 20 min.
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Fig. S4. (a) and (b) regional FITR spectra of DAD after anneal for different duration. (¢) Chemical

reaction of DAD during heating process derived from 'H NMR and FITR analysis.
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Fig. S5. XPS spectra of (a) S 2p and (b) Pb 4f peaks of the control and target perovskite films. The
signal of S element was detected in the target film with DAD additive. And Pb 4f XPS peaks shifted

toward lower binding energies in the target film compared to the control film.
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Fig. S6. Particle size distribution of the control and target perovskite precursor solution.
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Fig. S7. Optical microscope images of solvent-free wet control and target films at different stages
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Fig. S8. (a) Surface SEM images and (b) corresponding grain size distribution of the control and

target films.
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Fig. S10. TOF-SIMS measurement of the target perovskite solar cells.
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Fig. S11. GIXRD patterns of the (a) control and (b) target. (c) Linear fitting of the stress distribution

of the control and target films versus sin(‘V).
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Fig. S12. AFM images of the control and perovskite films with different concentrations of DAD

(0.50 mg/mL, 0.75 mg/mL, and 1.00 mg/mL).
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Fig. S13. (a) UV-vis absorption spectra of the control and target perovskite films. (b) Tauc plot for
the control and perovskite films. The optical bandgap of perovskite is 1.53 eV. This result suggests
that adding a small amount of DAD does not impact the bandgap, confirming that the increased

light absorption is primarily due to better crystallinity rather than changes in the electronic structure.
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Fig. S14. Corresponding current curves of the control and target perovskite films derived from Fig.
2g, h.

Normalized PL
=)

10_315 1.00 mg/mL
] 0.75 mg/mL
104+ 0.50 mg/mL
Control
10-5 Ll L] T T
00 03 06 09 12 15
Time (us)

Fig. S15. TRPL spectra of the control and perovskite films with different concentrations of DAD

(0.50 mg/mL, 0.75 mg/mL, and 1.00 mg/mL). The detailed parameters are provided in Table S1.
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Fig. S16. SEM cross-sectional image of the control device.
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Fig. S17. Forward and reverse J-V scans of PSCs with (a) 0.50 mg/mL and (b) 1.00 mg/mL DAD.
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Fig. S18. Statistical box for open-circuit voltage (V,.), fill factor (FF), short-circuit current densities

(Jso), power conversion efficiency (PCE) of the control and PSCs with different concentrations of

DAD.
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Fig. S19. (a) Photocurrent outputs and (b) Stabilized PCEs at the maximum output power point of

the control and target PSCs (0.75 mg/mL).
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Fig. S20. Photocurrent outputs and Stabilized PCEs at the maximum output power point of the PSCs

with (a) 0.50 mg/mL and (b) 1.00 mg/mL DAD.
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Fig. S24. Dark J-V curves of the hole-only (a) control and (b) target devices based on SCLC mode.
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Fig. S25. Dark J-V curves of the electron-only (a) control and (b) target devices based on SCLC

mode.

6
Control
5 Target
o
£ 44
o
[T ]
© 37
X 2]
=
14
O L] T
hole-only electron-only
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SCLC mode.
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Fig. S27. Dark J-V curves of the control and target PSCs.
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Fig. S28. EIS of the control and target PSCs. The detailed parameters are provided in Table S3. EIS
measurements were conducted to further investigate the carrier transport and recombination
processes in perovskite devices incorporating DAD. The reduced R; improves carrier transport,

while the increased R, benefits non-radiative recombination suppression.
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Fig. S29. (a) TPC and (b) TPV spectra of the control and target devices.
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Fig. S30. J-V scans of the control perovskite solar modules with an aperture area of 26.78 cm?.
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Fig. S32. Optical image of the PSC module with the P1-P2-P3 parameters.
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Fig. S33. (a) UV-vis spectra measured from five distinct regions of the 6x6 cm? film. (b) The

displaying a digital photograph of the large-area perovskite film.
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Fig. S34. Electroluminescence (EL) images of (a) control and (b) target PSMs.
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Fig. S35. UPS spectra of the control and target films in the (a) secondary electron cut-off region and

(b) valence band region.
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Fig. S36. Water contact angles of the control and target films.
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Fig. S37. PL spectra of the control (a) and (b) target perovskite films after different hours of 1 sun

illumination (AM 1.5G) at air condition (25 °C and 35%RH).

Fig. S38. SEM images of the control and target films after 3 h of 1 sun illumination (AM 1.5G) at

air condition (25 °C and 35%RH).
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Fig. S39. PL spectra of the control and target films after different hours of 1 sun illumination (AM

1.5G) at high-temperature and high-relative humidity environment (85 °C and 35%RH).
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Fig. S40. Water resistance testing of the control and target perovskite films. As seen in Fig. S40a,
water droplets were placed on the two perovskite films, the control film shows significant change,
while the target film exhibits much less change. The control and target films were placed in the
high-humidity environment and continuously monitored for changes. After 96 h, the target film was

more stable than the control sample (Fig. S40Db, c).
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Fig. S41. Operation stability of the control and target PSC modules under MPP tracking.

Table S1. Parameters of TRPL spectra of the control and perovskite films with different

concentrations of DAD (0.50 mg/mL, 0.75 mg/mL, and 1.00 mg/mL).

Structure Ay (%) 71 (ns) A, (%) T, (NS)  Taye (NS)

Control 44 69.0 56 116.9 101.7
0.50 mg/mL 39 74.6 61 415.1 379.7
0.75 mg/mL 5 164.3 95 1131 1123.8
1.00 mg/mL 20 80.5 80 568.7 551.7

Table S2. Photovoltaic parameters of the control and PSCs with different DAD concentration (0.50

mg/mL, 0.75 mg/mL, and 1.00 mg/mL).

Device Voo/V FE/ Jo/mA-cm? n/%
Reverse 1.145 82.25 25.03 23.57
Control

Forward 1.132 74.80 24.99 21.16
Reverse 1.162 82.55 25.16 24.13

0.50 mg/mL
Forward 1.156 80.17 25.02 23.19
Reverse 1.190 85.01 25.79 26.08

0.75 mg/mL
Forward 1.182 84.16 25.63 25.49
Reverse 1.178 85.56 25.33 25.53

1.00 mg/mL
1.170 81.25 25.33 24.08

Forward




Table S3. Specific values of recombination resistance (R,..) and series resistance (R;) for the control

and target devices.

RS(Q) RTCC (Q)
Control 25.94 1745

Table S4. Photovoltaic parameters of PSC modules (aperture area of 26.78 c¢cm?) without or with

DAD.

Device Joo/mA-cm? Vo/NV  FE/ /%
Reverse 2.97 8.66 69.25 17.83

Control
Forward 2.98 8.30 68.97 17.09
Reverse 3.05 9.02 76.21 20.98

Target
Forward 3.06 8.90 75.88 20.68
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