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1. Materials and synthesis

D18, BTP-eC9 and PDINN were purchased from Solarmer Energy Inc. 1-Chloronaphthalene (CN) were
purchased from TCI. Super dry reagents were purchased from J&K and other conventional reagents were
from SCRC.

The synthetic routes are illustrated in Scheme S1. Diethyl 2,5-dibromoterephthalate and 1-bromo-4-
hexylbenzene were purchased from BIDE Pharm. Thiophene-2-boronic acid and (2-(5,6-dichloro-3-oxo-
2,3-dihydro-1H-inden-1-ylidene)malononitrile were purchased from SunaTech Inc. All other chemicals were

used as-received without further purification.
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Scheme S1. The synthetic route to S-IDT and D-IDT.
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Table S1. The overview of the reaction results of direct C-H activation reactions under different conditions.

No. Conditions Yields
1 Fe(acac);, TP2, AlMe;,DEO, THF/PhMe No Reaction
2 Pd(OAc),, Cu(OAc),, Na,COs, PivOH, DMA 70%
3 Pd(OAc),, Cu(OAc),, K,CO3;, DMF 84%

Synthesis of diethyl 2,5-di(thiophen-2-yl)terephthalate (Compound 2): Diethyl 2,5-dibromoterephthalate
(2281 mg, 6.00 mmol) and thiophene-2-boronic acid (1800 mg, 14.07 mmol) were dissolved in THF (40 mL)
under nitrogen. Then NaHCO; (2860mg, 34.04 mmol), H,O (14 mL) and Pd(PPh;), (60 mg, 0.05 mmol)
were added. After reacting 48 h at 80 °C, the mixture was purified by silica gel column chromatography
(PE:EA=10:1, v/v) to obtain a white solid Compound 2 (2040 mg, 88%). '"H NMR (400 MHz, CDCls, ppm)
5: 7.81 (s, 2H, ArH), 7.39 (dd, J = 4.8 Hz, 1.6 Hz, 2H, ArH), 7.10-7.06 (m, 4H, ArH), 4.22 (q, /= 7.2 Hz,

4H, CHy), 1.15 (t, J=7.2 Hz, 6H, CHj;).

Synthesis of 4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b"|dithiophene (IDT): To the
solution of 1-bromo-4-hexylbenzene (6000 mg, 24.88 mmol) in THF (30 mL) under nitrogen at -78°C was
added n-BuLi (15.6 mL, 1.6 M in hexane), the mixture was kept at -78 °C for 1 h, then the solution of
Compound 2 (2000 mg, 5.18 mmol) in THF (20 mL) was added slowly. After the addition, the mixture was
stirred at room temperature for 24h and then poured into water and extracted twice with ethyl acetate. The
combined organic phase was dried over Na,SO,. After removing the solvent, the crude product was charged
into three-neck flask. After adding acetic acid (100 mL) and H,SO, (2 mL), the mixture was refluxed for 2
h. After pouring into water, the mixture was extracted with ethyl acetate. The mixture was purified by silica
gel column chromatography (PE:EA=10:1, v/v) to obtain a light-yellow solid IDT (2830 mg, 60%). 'H NMR
(400 MHz, CDCl;, ppm) 6: 7.43 (s, 2H, ArH), 7.23(d, J = 4.8 Hz, 2H, ArH), 7.15 (d, J = 8.4 Hz, 8H, ArH),
7.04 (d, J = 8.0 Hz, 8H, ArH), 6.99 (d, /= 5.2 Hz, 2H, ArH), 2.55 (t, J = 8.0 Hz, 8H, CH,), 1.61-1.54 (m,

8H, CH,), 1.34-1.26 (m, 24H, CH,), 0.89-0.85 (m, 12H, CHs).

Synthesis of 4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[ 1,2-b:5,6-b"]dithiophene-2,7-
dicarbaldehyde (IDT-2CHO) and 4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[1,2-5:5,6-
b'ldithiophene-2-carbaldehyde (IDT-CHO). IDT (1510 mg, 1.66 mmol) was dissolved in anhydrous DMF

(40 mL) at 0 °C. Then POCI; (290 mg, 1.89 mmol) was added. The solution was gradually warmed to room
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temperature, heated to 50 °C, and allowed to stir for 8 h. Then, saturated NaOAc (60 mL) was added and the
solution was stirred for a further 30 min. The mixture was extracted with dichloromethane and saturated NaCl
solution. The solvent was removed under reduced pressure. Then the organic phase was purified by silica gel
column chromatography (PE:DCM=1:1, v/v) to obtain yellow solid IDT-2CHO (465 mg, 29%) and IDT-
CHO (1050 mg, 67%). IDT-2CHO: 'H NMR (400 MHz, CDCl;, ppm) 8: 9.83 (s, 2H, ArH), 7.65 (s, 2H,
ArH), 7.59 (s, 2H, ArH), 7.11 (m, 16H, ArH), 2.57 (t, J = 8.0 Hz, 8H, CH,), 1.62-1.54 (m, 8H, CH,), 1.35-
1.27 (m, 24H, CH,), 0.89-0.85 (m, 12H, CH;). IDT-CHO: 'H NMR (400 MHz, CDCl;, ppm) 3: 9.80 (s, 1H,
ArH), 7.64 (s, 1H, ArH), 7.56 (s, 1H, ArH), 7.46 (s, 1H, ArH), 7.31 (d, /= 5.2 Hz, 1H, ArH), 7.16-7.14 (m,
8H, ArH), 7.09-7.06 (m, 8H, ArH), 7.02 (d, J=4.8 Hz,1H, ArH), 2.59-2.54 (m, 8H, CH,), 1.62-1.57 (m, 8H,

CH.,), 1.37-1.25 (m, 24H, CH,), 0.89-0.86 (m, 12H, CHs).

Synthesis of 2,2'-((22,2'2)-((4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[ 1,2-5:5,6-
b'ldithiophene-2,7-diyl)bis(methaneylylidene))bis(5,6-dichloro-3-0x0-2,3-dihydro-1H-indene-2,1-

diylidene))dimalononitrile (S-IDT): IDT-2CHO (200 mg, 0.21 mmol) and (2-(5,6-dichloro-3-0x0-2,3-
dihydro-1H-inden-1-ylidene)malononitrile (158 mg, 0.60 mmol) were dissolved in toluene. Then Ac,0O (0.4
mL) and BF;0Et; (0.6 mL) were added. After reacting 1h at room temperature, the mixture was purified by
silica gel column chromatography (PE:DCM=1:1, v/v) to obtain a dark brown solid S-IDT (272 mg, 90%).
'H NMR (400 MHz, CDCls, ppm) &: 8.91 (s, 2H, ArH), 8.78 (s, 2H, ArH), 7.93 (s, 2H, ArH), 7.74 (d, J =
4.8 Hz, 4H, ArH), 7.15-7.10 (m, 16H, ArH), 2.58 (t, J = 8.0 Hz, 8H, CH;), 1.63-1.56 (m, 8H, CH,), 1.34-
1.29 (m, 24H, CH,), 0.89-0.85 (m, 12H, CH3). 3C NMR (101 MHz, CDCl5) 8: 186.2, 160.1, 158.7, 158.2,
156.9, 142. 7, 141.8, 140.2, 140.1, 139.7, 139.4, 138.8, 137.4, 136.2, 129.0, 127. 8, 127.2, 125.4, 121.9,
120.4, 114.3, 77.5, 76.8, 70.3, 63.2, 35.7, 31.9, 31.4, 29.2, 22.7, 14.2. HR-TOF-MS (APCI) m/z: [M+H]*

calcd. for CooH79CI4N4O,S,, 1453.4369; found: 1453.4177.

Synthesis  of 4,4,4',4',9,9,9',9"-octakis(4-hexylphenyl)-4,4',9,9'-tetrahydro-[2,2'-bis-indaceno[ 1,2-b:5,6-
b'ldithiophene]-7,7'-dicarbaldehyde (2IDT-CHQ): IDT-CHO (374 mg, 0.40 mmol), Pd(OAc), (7 mg, 0.03
mmol), Cu(OAc), (50 mg, 0.28 mmol), and K,CO; (52 mg, 0.38 mmol) were dissolved in DMF (6 mL) under
nitrogen. After reacting 12 h at 100 °C, the mixture was purified by silica gel column chromatography
(PE:DCM=1:1, v/v) to obtain a dark red solid 2IDT-CHO (312 mg, 84%). "H NMR (400 MHz, CDCl;, ppm)

§:9.80 (s, 2H, ArH), 7.63 (s, 2H, ArH), 7.52 (s, 2H, ArH), 7.39 (s, 2H, ArH), 7.15-7.12 (m, 16H, ArH), 7.08-
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7.07 (m, 18H, ArH), 2.58-2.54 (t, /= 6.8 Hz, 16H, CHy), 1.61-1.58 (m, 16H, CH,), 1.34-1.26 (m, 48H, CH,),

0.88-0.86 (m, 24H, CH3).

Synthesis of 2,2'-((22,2'2)-((4,4,4',4',9,9,9',9'-octakis(4-hexylphenyl)-4,4',9,9'-tetrahydro-[2,2'-bis-
indaceno[1,2-b:5,6-b"]dithiophene]-7,7'-diyl)bis(methaneylylidene))bis(5,6-dichloro-3-o0x0-2,3-dihydro-

1 H-indene-2,1-diylidene))dimalononitrile (D-IDT): 2IDT-CHO (200 mg, 0.11 mmol) and (2-(5,6-dichloro-
3-0x0-2,3-dihydro-1H-inden-1-ylidene)malononitrile (80 mg, 0.30 mmol) were dissolved in toluene. Then
Ac,0 (0.5 mL) and BF;0Et, (0.6 mL) were added. After reacting 2h at room temperature, the mixture was
purified by silica gel column chromatography (PE:DCM=1:1, v/v) to obtain a dark brown solid D-IDT (225
mg, 89%). 'H NMR (400 MHz, CDCl;, ppm) 8: 8.88 (s, 2H, ArH), 8.76 (s, 2H, ArH), 7.90 (s, 2H, ArH), 7.70
(s, 2H, ArH), 7.66 (s, 2H, ArH), 7.41 (s, 2H, ArH), 7.16-7.13 (m, 16H, ArH), 7.11-7.08 (m, 18H, ArH), 2.57
(t, J=8.0 Hz, 16H, CH,), 1.63-1.56 (m, 16H, CH,), 1.34-1.27 (m, 48H, CH,), 0.89-0.86 (m, 24H, CHj3). 13C
NMR (101 MHz, CDCly): 6: 186.3, 162.7, 159.1, 158.5, 157.8, 156.9, 154.5, 142.9, 142.4, 142.2, 141.0,
140.7, 140.6, 140.5, 140.0, 139.7, 139.6, 139.3, 138.8, 136.2, 133.6, 128.8, 128.8, 127.9, 127.1, 125.2, 120.4,
120.2,119.9, 117.6, 114.6, 77.5, 76.8, 69.0, 63.3, 63.0, 35.7, 35.7,31.9, 31.4, 29.3, 22.7, 14.2. HR-TOF-MS

(APCI) m/z: [M+H]+ calcd. for C154H151C14N4OZS4Z 23589478, found: 2358.9034.
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Figure S1. 'H NMR spectrum of Compound 2 in CDCls;.
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Figure S2. 'H NMR spectrum of IDT in CDCl;.
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Figure S3. 'H NMR spectrum of IDT-2CHO in CDCl;.

600°0 —

098°0
LL8O~
26807
8PTI~
ILET~
S9S'T ~
w91

(024
LYS'T /

098°T
ohm.N\
985°C

600°L
120°L
SSO°L
890°L
SLO'L

3(1H) (ppm)

880°L

SEI'L

em:\
€10aD 09T'L

90€°L

v08°6 —

S F 0T

Figure S4. '"H NMR spectrum of IDT-CHO in CDCls.

S7



100°0 —

— Fove

—= F 08

3(1H) (ppm)

6YI'L \

€10dD 09T°L

$

|

— =0

08L'8 —
8068 —

0T
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Figure S11. HR-TOF-MS spectrum of D-IDT.

2. Device fabrication

The OSCs were fabricated with the traditional sandwich structure: ITO/BrBACz/Active layer/PDINN/Ag.
After being cleaned with deionized water, acetone and isopropanol, the ITO glass was treated with the UV-
Ozone for 25 minutes. Firstly, BrBACz in ethanol solution was spin-coated on the treated-ITO glass at 3000
r.p.m for 30 s and then thermal annealing at 100 °C for 20 minutes. Then, the active layer was spin-coated
from 13 mg mL~! solution dissolved in chloroform (D18: Acceptors = 1:1.2-1.3, D18: BTP-eC9: Acceptor =
1:1.1:0.2, 0.45% v/v CN) at varied spinning speed for 30 s to form an active layer. After solution deposition
the active layer was annealed at 100 °C for 10 minutes. Subsequently, PDINN was dissolved in methyl
alcohol solution (1 mg mL!) and spin-coated at 2000 r.p.m for 30 s. Finally, Ag was deposited ca. 150 nm

under the pressure of 3x105 Pa.
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Scheme S2. The chemical structures of the used materials in devices.

3. Characterization

'"H NMR and '3C NMR spectra were recorded on Bruker (AVANCE III 400MH). High resolution time of
flight mass spectrometer (HR-TOF-MS) was obtained from AB Sciex (TripleTOF 4600). Absorption spectra
of both solution and thin-film samples of the compounds were recorded using a Perkin Elmer (Lamdba 1050)
UV-Vis scanning spectrophotometer. Grazing Incidence Wide Angle X-Ray Scattering (GIWAXS) were
performed on a XEUSS SAXS/WAXS system (XENOCS, France) at the National Center for Nanoscience
and Technology. Grazing Incidence Small Angle X-Ray Scattering (GISAXS) were performed on a XEUSS
SAXS/WAXS system (XENOCS, France) at the Ningbo Institute of Materials Technology and Engineering.
Morphologies of the active layers were analyzed through atomic force microscopy (AFM) in tapping mode
under ambient conditions using Bruker (Dimension ICON) instrument. Contact angles of pure films by
applying deionized water (H,O) and diiodomethane (DIM) liquid drops tested by a contact angle meter
(OCAZ25). The J-V measurement was performed via the solar simulator (Newport-Oriel® Sol3A 450W). The
intensity of the AM 1.5G spectra was calibrated by a certified standard silicon solar cell. The area of the
tested solar cells was determined by an optical microscope. The effective areas of the cells were 0.04 cm?.
Keithley 2440 source meter with a solar simulator (Newport-Oriel® Sol3A 450W) were used to do the
electrical conductivity test (under dark). A solar cell QE tester (QE-R, Enli Technology Co., Ltd) calibrated

with a 75W xenon lamp source standard probe was be utilized to obtain the external quantum efficiency
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(EQE) spectrums.

4. Cyclic voltammetry measurement

The Cyclic Voltammetry (CV) measurement was carried out with the film made by dropping 8 mg mL-!
solution onto the working electrode (BusNCIO,, as supporting electrolyte) under an argon atmosphere at a
scan rate of 0.1 V s using a PC controlled electrochemical workstation (Shanghai Chenghua CHI604E).
The CV system was constructed using a Pt disk as the working electrode, a Pt wire as the counter electrode,
and an Ag/AgNO; (0.1 mol L' in acetonitrile) electrode as the reference electrode. Ferrocene was used as an
internal standard. The electrochemical potential was internally calibrated against the standard ferrocene/
ferrocenium redox couple (Fc/Fc™), which has a known reduction potential of -4.80 eV relative to vacuum
level. The HOMO and LUMO of the objective compounds are calculated according to the following

equations:

onest

HOMO = -[Eox +4.8]

Eones t

LUMO =-[Ered +4.8]

Eonset Eonest . . A . . .
Where © ox and ™ red are the onset of oxidation potential and reduction potential vs. Fc/Fc™, respectively.

5. SCLC measurement

The charge mobilities were measured by SCLC method. The hole-only device was fabricated via a
structure of ITO/PEDOT:PSS/Active layer/MoQOs/Ag, and the electron-only device was constructed via a
structure of ITO/ZnO/Active layer/PDINN/Ag. By fitting the curves of J2-V, the mobility value can be

obtained according to the equation:
2
TscLe = gSOSr#E
Where JscLc is current density; € is the permittivity of vacuum; &, is the relative permittivity; p is mobility

value; L is the thickness of the active layer; and V is the effective voltage.

6. Femtosecond transient absorption (fs-TA) spectroscopy measurement

Femtosecond transient absorption spectra (fs-TAs) were recorded utilizing a Yb:KGW laser (Pharos, Light
Conversion) with a fundamental output wavelength of approximately 1030 nm. A custom-designed

noncollinear optical parametric amplifier was employed to generate pump pulses centered at 800 nm. A
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supercontinuum probe beam spanning 500-950 nm was produced by focusing a small portion of the 1030 nm
fundamental beam onto a 5 mm thick sapphire plate. Subsequently, the supercontinuum light was divided
into two balanced detection beams using a double-line Si camera (S14417, Hamamatsu). Pulse-to-pulse
spectral analysis was performed at a 50 kHz repetition rate with the assistance of a homemade field-
programmable gate array (FPGA) control board. The pump fluence was maintained at 2 uJ cm? unless
otherwise noted. Samples were maintained under a nitrogen atmosphere throughout the measurement process

to mitigate photo-degradation. The data were processed by using the software Surface Xplorer.

7. In-situ ultraviolet-visible (UV-vis) absorption measurements

In-situ UV-vis absorption measurements were performed by the Filmetrics F20-EXR spectrometer using
the transmission mode with a time resolution of 25 ms. The spectrometer consists of a light source and
detector. The light source and detector are fixed above and below the substrate, respectively, and on the same
vertical line. The solution was spined onto the substrate, and the film was formed on the glass substrate. The
detector collects the transmission spectra ranging from 400 to 1050 nm during coating. The UV-vis
absorption spectra are calculated from the transmission spectra according to the equation A\ = - log10(T),
where AL is the absorbance at a certain wavelength (A), and T is the calculated transmittance. The light source
and detector were turned on before coating the film, so time zero is the point when the first solution
transmission spectrum was collected by the detector. Before time zero, there is only noise in the transmission

spectra.

8. Theoretical calculation.

All the calculations of the model compounds studied in this work were performed using the Gaussian 09
software package. Ground state geometry optimizations of 5-IDT and 6-IDT in this paper are calculated by
DFT at the B3LYP/6-31G (d, p) (empirical dispersion = gd3bj) level. The alkyl side-chains are replaced with
methyl groups for saving computation time without affecting the description of electronic properties. The

visualization of the molecular orbitals was performed using GaussView 6.0.16.
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Figure S12. The cyclic voltammograms of S-IDT and D-IDT.
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Figure S13. Theoretical electron distribution calculated by the DFT for S-IDT and D-IDT.
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Figure S14. The normalized absorption spectra of D18, BTP-eC9, S-IDT and D-IDT in chloroform solution.

Table S2. Summary of the optical properties of S-IDT and D-IDT.

Acceptors Amax>®" (nm) Amax ™ (nm) AA (nm)
S-IDT 689 754 65
D-IDT 723 748 25
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Figure S15. Simulated molecular geometries obtained via DFT calculations for simplified chemical
structures of S-IDT and D-IDT.
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Figure S16. J-V characteristics of the devices based on (a) PM6:BTP-eC9 and (b) D18:L8-BO.

Table S3. Detailed GIWAXS peak information of the blend films in OOP and IP.

Location FWHM

Blend films (A d-spacing (A) (A CCL (A)
S-IDT 1.731 3.63 0.255 22.18
0OP (010)
D-IDT 1.401 4.47 0.704 8.03
S-IDT 0.400 15.71 0.118 47.92
IP (100)
D-IDT 0.373 16.85 0.157 36.02
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Figure S17. The dependence of Jgc on light intensity (Pj;g:,) of relevant devices.
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Figure S18. The electron mobilities (a) hole mobilities (b) of the devices.
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Table S4. Detailed V,;; parameters of the devices.

Voc E, Ejy Voc®¢  Vocd™ AE; AE, AE;
Acive layer

[V] [eV] [eV] [V] [Vl [eV]? [eV]® [eV]¢
DI18:BTP-eC9 0851 1.403 0552 1141  1.060 0262 0.081  0.196
DI18:BTP-eC9: 0.848 1411 0563  1.149 1079 0263 0.070  0.205

S-IDT

D1&:BTP-eC9:

0.875 1409 0534  1.147 1081 0262 0.066  0.193

D-IDT

aAE] :Eg- qVOC

PAE; = qVoc™P - qVod ™

CAE3 = —ktlnEQEEL
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Figure S20. The transient absorption spectra of D18:BTP-eC9 (a), D18:BTP-eC9:S-IDT (b) and D18:BTP-
e¢C9:D-IDT (c¢) films extracted from different time.
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Figure S21. Comparison of the hole-transfer kinetics probed at 586 nm for the corresponding blends.
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Figure S22. Film-depth-dependent exciton generation contours and the dependence of the simulated exciton
generation rate (G) on the film depths of D18:BTP-eC9, D18:BTP-eC9:S-IDT and D18:BTP-eC9:D-IDT.
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D18 l

Figure S23. Contact angles of D18, BTP-eC9, S-IDT, and D-IDT thin films by applying deionized water
(H,0) and diiodomethane (DIM) liquid drops.

Table S5. Summarized contact angels and surface energies of D18, BTP-eC9, S-IDT, and D-IDT.

Materials  Owaer [°]  Opim [°]  Y¢[mMNm']  y?[mNm'] y[mNm'] ADIS/AY  XBTP-cCo/A®

D18 104.036  60.038 29.120 0.111 29.231 - -

BTP-eC9  96.562 45.046 37.348 0.269 37.615 0.528 K -
S-IDT 95.428 36.465 42.263 0.133 42.396 1.220K  0.143K
D-IDT 94.853 50.452 33.360 0.791 34.151 0.191K  0.084 K

a. The Flory-Huggins interaction parameter between the donor and accepter is calculated through equation of
Xp1g/a =K \/ﬁ —q/yD18)2.
b.The Flory-Huggins interaction parameter between the two accepter (BTP-eC9 and A ) is calculated through

2
equation of ABTP - eC9/A = K(m - \/ﬁ) .
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Figure S24. Line profiles across the AFM phase images of D18:BTP-eC9, D18:BTP-eC9:S-IDT and
D18:BTP-eC9:D-IDT.
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Figure S25. The line-cut-of profiles along the in-plane (IP) and out-of-plane directions (OOP) of blend films
corresponding to the 2D G-IWAXS patterns.

Table S6. Detailed GIWAXS peak information of the blend films in OOP and IP.

Blend films L()(f;_tll)on d-spacing (A) FXI_II)M C(g)L
D18:BTP-eC9 1.720 3.65 0.286 19.77
oop
D18:BTP-eC9:S-IDT (010) 1.727 3.64 0.277 20.42
D18:BTP-eC9:D-IDT 1.725 3.64 0.294 19.23
D18:BTP-eC9 0.313 20.07 0.073 77.46
IP
D18:BTP-eC9:S-IDT (100) 0.314 20.01 0.074 76.42
D18:BTP-eC9:D-IDT 0.312 20.14 0.078 72.50
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Figure S26. GISAXS plots of the in-plane line-cut plots and fitting lines.
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Figure S27. (a) Photo-stability OSCs of the encapsulated devices under continuous 1-sun illumination. (b)
Thermal stability of the unencapsulated devices in an N, atmosphere. (Device structure: ITO/SnO,/Active

layer/MoO3/Ag.)
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