Electronic Supplementary Information

Dynamic disulfide bond networks enable self-healable and mechanically resilient intrinsically stretchable organic solar cells

Wenyu Yang,^a Xuanang Luo,^a Jiankang Liu,^a Jingchuan Chen,^a Xuefei Wu,^b Zachary Fink,^b Chuqi Shi,^c Wenkai Zhong*,^a, Cheng Wang,^d Lei Ying*,^a

^a Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

E-mail: wkzhong@scut.edu.cn; msleiying@scut.edu.cn

Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA
 94720, United States

^c Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

^d Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

Experimental Section

Materials

All reagents and chemicals were purchased from commercial suppliers, including Aldrich, Alfa Aesar, and J&K, and used without further purification unless otherwise noted. PTzBI-oF was supplied by Dongguan VoltAmp Optoelectronics Technology Co., Ltd. PYIT and PNDIT-F3N were obtained from Solarmer Inc. (China), and PETMP was sourced from Tokyo Chemical Industry.

Synthesis

Scheme 1. Synthetic route of BVTD molecule (compound 2).

Preparation of N-(4-vinylbenzyl)ethanamine (1)

Compound 1 was prepared following a previously reported method.^[1]

Preparation of N, N'-diethyl-N, N'-bis(4-vinylbenzyl)thiuram disulfide (BVTD) (2)

Compound 2 was synthesized according to a similar reported procedure.^[2] Compound 1 (8.06 g, 50 mmol) and chloroform (25 mL) were placed in a round-bottom flask cooled in an ice bath. Carbon disulfide (1.5 mL, 25 mmol) and iodine (3.18 g, 12.5 mmol) were then added sequentially. The reaction mixture was stirred for 3 hours and subsequently washed with water. The organic phase was dried by anhydrous Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography (silica gel) using a mixture of petroleum ether:ethyl acetate as the eluent, giving a 3.65 g transparent yellow oil. (Yield: 70%) 1 H NMR (500 MHz, CDCl₃): δ = 7.39 (d, J = 7.9 Hz, 4H), 7.29 (d, J = 7.9 Hz, 4H), 6.69 (dd, J = 17.5, 10.9 Hz, 2H), 5.72 (d, J = 17.5 Hz, 2H), 5.26 (d, J = 10.9 Hz, 2H), 4.03 (s, 4H), 1.43 (q, J = 7.1 Hz, 4H), 1.26 (t, J = 7.1 Hz, 6H).

Fabrication of OSC devices with rigid substrates

The solar cell devices were fabricated with the structure ITO/PEDOT:PSS/active layer/PNDIT-F3N/Ag. ITO-patterned glass substrates were sequentially cleaned by sonication in detergent, deionized water, and isopropyl alcohol. After drying in an oven, the substrates were treated with oxygen plasma for 2 minutes and then spin-coated with PEDOT:PSS (Clevios PVP Al 4083) at 4000 rpm, achieving a thickness of ~15 nm. The PEDOT:PSS films were then annealed on a hot plate at 150 °C for 15 minutes in air. Subsequently, the substrates were moved to a nitrogen-filled glovebox. For blend films without network, PTzBI-oF and PYIT were dissolved in chloroform at concentrations of 8 mg/mL, and then PTzBI-oF and PYIT were sequentially casted. For blend films with network, PETMP and BVTD (1:2, wt:wt) were pre-dissolved in chloroform at 8 mg/mL at room temperature, and then added to the PTzBI-oF solution. The PTzBI-oF solution was spin-coated onto the PEDOT:PSS layer at 1500 rpm and thermally annealed at 100 °C for 5 minutes. The thiol-ene click based crosslinked reaction was done through 365 nm UV illumination for 5 minutes during thermal annealing. Next, the PYIT layer was spin-coated at 2000 rpm and thermally annealed at 100 °C for 5 minutes. A 1 mg/mL PNDIT-F3N methanol solution was then spincoated on top of the active layer at 3000 rpm. Finally, a 100 nm layer of Ag was thermally evaporated onto the interface through a shadow mask in a vacuum chamber at a pressure of 3×10^{-7} torr. The effective device area was defined as 0.05 cm², with the active area further limited to 0.032 cm² using a non-refractive mask to improve measurement accuracy.

Fabrication of IS-OSC devices

The IS-OCS devices were fabricated with the structure TPU/PEDOT:PSS (M-PH1000)/PEDOT:PSS (4083)/active layer/PNDIT-F3N/EGaIn@Ag. The stretchable, transparent electrode was prepared by modifying PH1000 with the addition of 5 vol% dimethyl sulfoxide, 2 vol% polyethylene glycol, 0.5 vol% FS-30, and 0.1% GOPS. The resulting solution was spin-coated onto a TPU substrate at 1500 rpm, followed by

baking at 100°C for 20 minutes. Next, PEDOT:PSS (4083) was spin-coated onto the PH1000/TPU layer at 3000 rpm and dried at 100 °C for 20 minutes. The active layers were then spin-coated using the same conditions as for the rigid OSC fabrication. Then, PNDIT-F3N (methanol solution, 1 mg/mL) was spin-coated at 3000 rpm on the active layers. Finally, a 100 nm thick Ag layer was thermally evaporated onto the interface through a shadow mask in a vacuum chamber at a pressure of 3×10^{-7} torr. EGaIn liquid metal was then sprayed onto the Ag layer using a deposition mask, yielding the EGaIn@Ag stretchable electrodes. The effective area of the fabricated device was defined as 0.04 (0.2×0.2) cm².

OSC device characterizations

J-V curves were measured using a Keithley 2400 source meter with illumination (100 mW cm⁻²) provided by an AM 1.5G solar simulator (SS-F5-3A, Enlitech) in a nitrogen-filled glovebox. Devices were tested using a mask to redefine the active layer area to 0.032 cm².

J-V curves were measured with a Keithley 2400 source meter under illumination (100 mW cm⁻²) provided by an AM 1.5G solar simulator (SS-F5-3A, Enlitech) in a nitrogen-filled glovebox. EQE spectra were measured using an EQE measurement system (QE-R3011, Enlitech), with the light intensity at each wavelength calibrated using a standard single-crystal Si solar cell before the test.

Mobilities of thin films were measured using hole-only and electron-only devices with the following structures: ITO/PEDOT:PSS/active layer/MoO₃/Ag for hole mobility and ITO/ZnO/active layer/PNDIT-F3N/Ag for electron mobility. The dark J-V curves were recorded using a Keithley 2400 source meter. The mobilities were extracted using the space-charge-limited current (SCLC) method, based on the Mott-Gurney equation: $J = 9\varepsilon_r\varepsilon_0\mu V^2/8L^3$, where J is the current density, ε_r is the relative dielectric constant of the active layer, ε_0 is the vacuum permittivity, μ is the mobility, V is the effective voltage, and L is the thickness of active layer.

The photo-CELIV, dark capacitance-voltage (C-V) and capacitance-frequency (C-F) curves of devices were measured using the PAIOS platform (FLUXiM, Switzerland).

General characterizations

¹H nuclear magnetic resonance (NMR) spectrum was measured on a Bruker AV-400 MHz spectrometer with tetramethyl silane (TMS) as the internal reference. UV-vis-NIR absorption spectra of thin films were measured by a SHIMADZU UV-3600 spectrophotometer. The films were prepared by spin-coating their solutions onto quartz substrates. X-ray photoelectron spectroscopy (XPS) was determined by British Kratos X-ray photoelectron spectroscopy for element analysis. The films were spin-coated on ITO substrates. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was conducted using a Nano TOF II instrument (ULVAC PHI, Japan). A Bi₂³⁺ cluster primary-ion gun operating at 30 kV was employed for analysis, with a GCIB beam (5 keV, 5 nA) used for sputtering at a rate of 0.2 nm/s for depth profiling. The analysis was carried out over a 100 μm × 100 μm area, while sputtering covered a 300 μm × 300 μm area. Atomic force microscopy (AFM) images were obtained using a NanoScope NS3A system (Digital Instruments). AFM-infrared (AFM-IR) spectroscopy was performed using an Anasys nanoIR3 system (Bruker).

Grazing incidence wide angle X-ray scattering (GIWAXS) was performed on a Xenocs Xeuss 2.0 system equipped with an Excillum MetalJet-D2 X-ray source, operated at 70.0 kV and 2.8570 mA. The X-ray wavelength was 1.341 Å. PTzBI-oF/PYIT thin films were spin-coated onto PEDOT:PSS-coated silicon wafers under the same conditions used for OSC device fabrication. The X-ray beam was incident at an angle of 0.20° to probe the bulk film structure. The sample-to-detector distance was ~210 mm, and the scattering patterns were collected using a DECTRIS PILATUS3 R 1M area detector. Data processing and analysis were carried out using the Igor Probased Nika software package. Resonant soft X-ray scattering (RSoXS) was performed at beamline 11.0.1.2 of the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL). Films were spin-coated onto PEDOT:PSS/silicon wafer

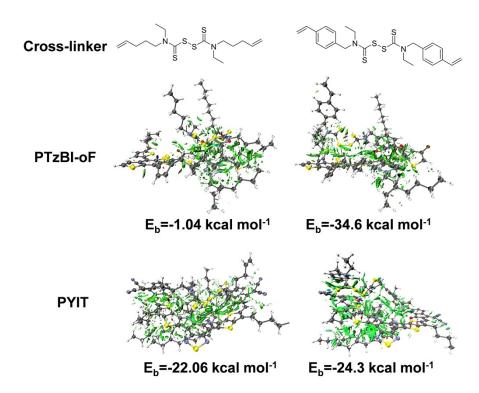
substrates. The films were floated on deionized water by dissolving the PEDOT:PSS layer and then transferred onto silicon nitride windows for scattering experiments in transmission mode. Scattering images were captured using a Princeton Instruments PI-MTE CCD camera with a pixel size of 0.027 mm × 0.027 mm. Data reduction was performed using the Igor-based Nika package.^[3]

Stress-strain (σ - ϵ) curves of thin films

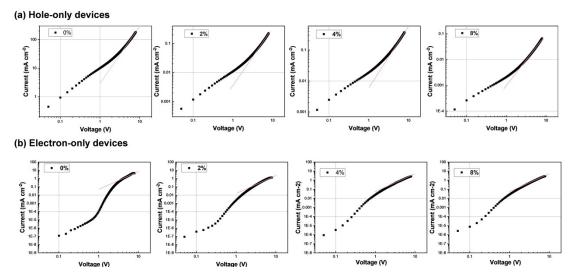
Tensile tests were performed by a free-standing method, as reported previously.^[4] The active layer solution was spin-coated onto a PEDOT:PSS-coated glass substrate. Sequential post-treatments were same as the OSC device fabrication. The sample was then placed on deionized water. As the PEDOT:PSS dissolves in water, the active layer floats on the surface. Then, the clamps of a tensile stage, equipped with frosted aluminum blocks, were adjusted to carefully capture the floating film through van der Waals forces. The deionized water was then gradually removed, leaving a free-standing active layer film on the tensile stage. The film was stretched at a speed of 0.03 mm/min. The stress (σ) and strain (ε) were calculated using the following equations:

$$Stress = F / (A \times B)$$

 $Strain = \Delta l / l_0$


where F is the applied force recorded by a highly sensitive force sensor, A is the width of the film (10-12 mm), B is the thickness of the film, Δl is the elongation of the film, and l_0 is the initial distance between the clamps.

Density function theory (DFT) and molecular dynamics (MD) simulation


Molecular conformations were optimized using the Gaussian 16 software at the B3LYP-D3/6-31G** and PM6-D3 levels to obtain bimolecular geometries. Interactions were subsequently calculated at the B3LYP-D3/TZVP level. The results were analyzed and visualized using the Multiwfn⁵ and VMD⁶ software packages.

Molecular dynamics (MD) simulations were conducted using the DFT-optimized conformations to construct amorphous cells according to the following protocol: each

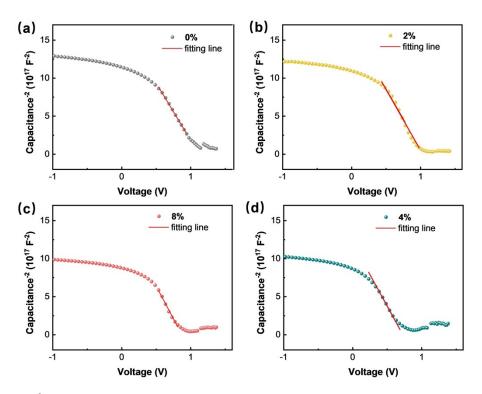
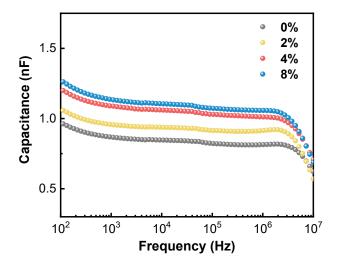
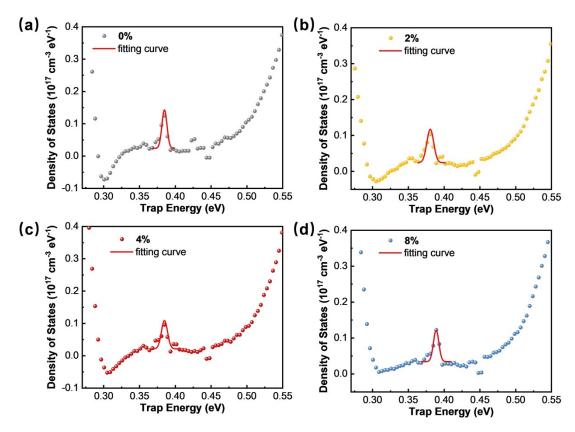
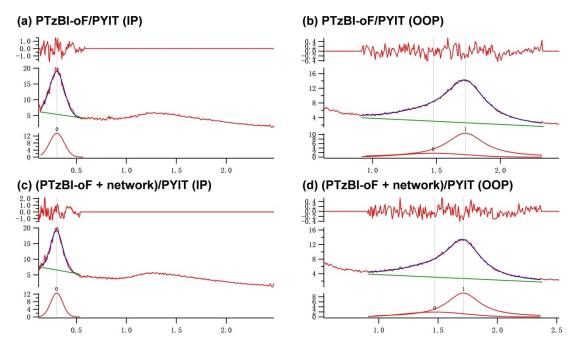
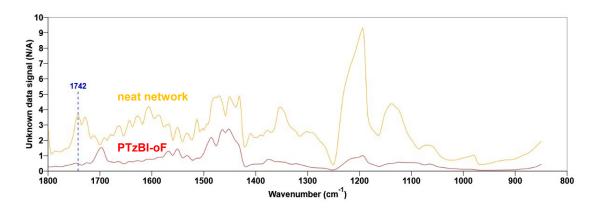

simulation cell contained three donor decamers, five acceptor tetramers, and 0/4 wt%/8 wt% of BVTD crosslinked networks. The initial density of the system was set to 0.5 g cm⁻³. After energy minimization, the systems were subjected to a stress-strain procedure using the Forcite module, with applied stress increasing sequentially from 0 to 0.1, 0.5, 1.0, and 1.5 GPa. Final snapshots were collected under 1.5 GPa stress. A representative PYIT molecule was highlighted in red to evaluate the molecular mobility.

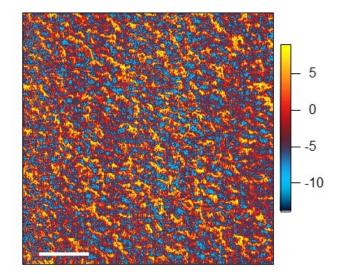
Fig. S1 Calculated binding energies (E_b) between cross-linker molecules (without or with phenyl groups) and conjugated polymer fragments (PTzBI-oF or PYIT).

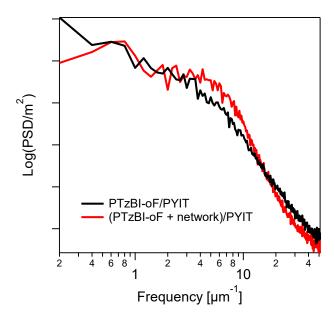
Fig. S2 The *J-V* curves of (a) hole-only devices and (b) electron-only devices based on (PTzBI-oF+network)/PYIT, where the network was prepared with varying BVTD ratios (0%, 2%, 4%, and 8%). The red lines indicate the SCLC regions used for the calculation of mobilities.

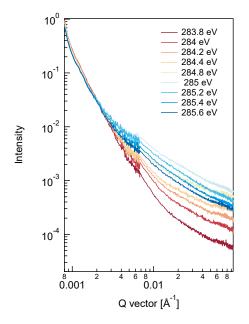
Fig. S3 $1/C^2$ -V plot of OSCs fabricated with varying BVTD ratios and the results of the fitting line in the linear region.


Fig. S4 C-F characteristics of OSCs fabricated with varying BVTD ratios.


Fig. S5 tDOS- E_{ω} curves of OSCs fabricated with varying BVTD ratios and the fitting results.


Fig. S6 Peak-fitting for GIWAXS I-q curves in the IP and OOP directions of (a,b) PTzBI-oF/PYIT, (c,d) (PTzBI-oF + network)/PYIT films.


Fig. S7 IR spectra of PTzBI-oF and the network (BVTD:PETMP = 2:1) thin film, where the wavenumber of 1742 cm^{-1} can be used to highlight the network by AFM-IR.

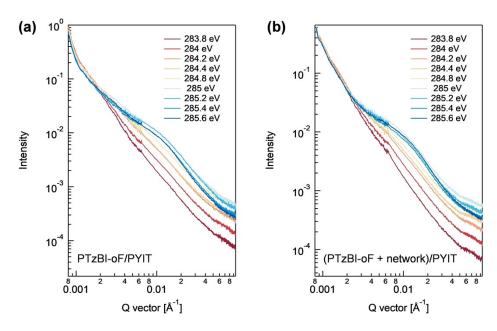
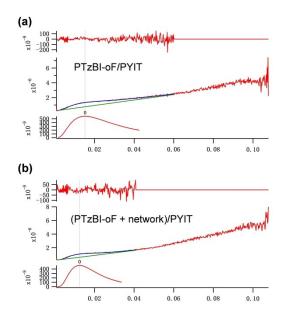
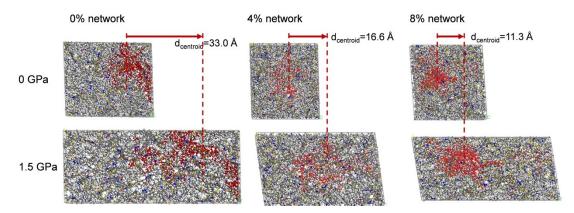
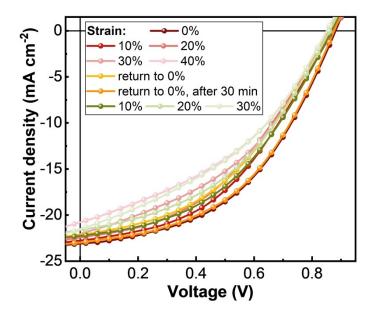

Fig. S8 AFM-IR images of PTzBI-oF + network (8% BVTD) thin film probed at 1742 cm⁻¹, while scale bar in the image represents 0.25 μ m, and the color bar indicates the IR amplitude.

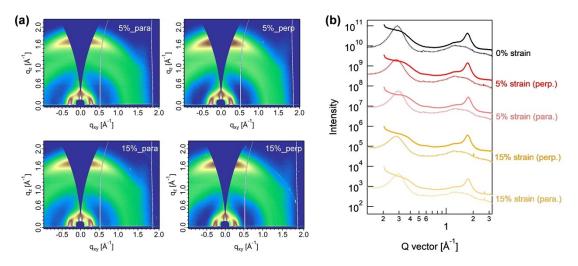

Fig. S9 Power spectral density (PSD) analysis for the AFM height images of PTzBI-oF/PYIT and (PTzBI-oF + network)/PYIT blend films, where the network was prepared with 4 wt% BVTD relative to the PTzBI-oF.

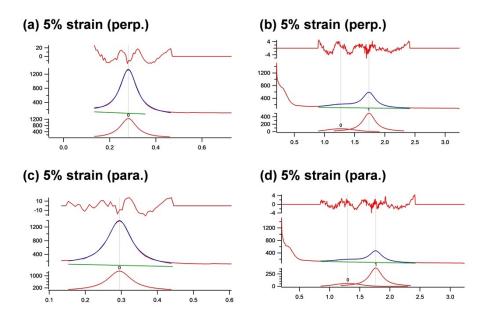
Fig. S10 RSoXS *I-q* curves of PTzBI-oF + network (4% BVTD) thin film at different energies at C K-edge.

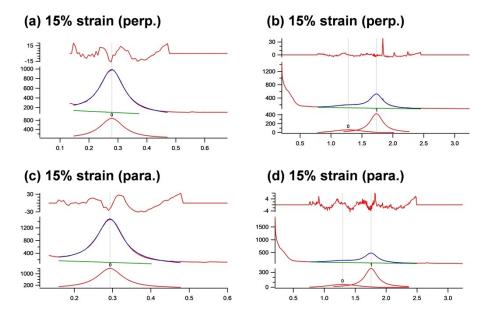
Fig. S11 RSoXS *I-q* curves of PTzBI-oF/PYIT, (PTzBI-oF + network)/PYIT blend thin film at different energies at C K-edge. The network was prepared with 4 wt% BVTD relative to the PTzBI-oF.

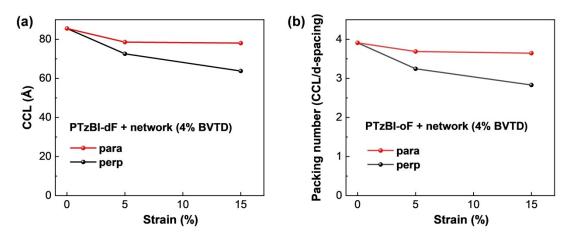
Fig. S12 RSoXS *Iq*²-*q* curves of PTzBI-oF/PYIT, (PTzBI-oF + network)/PYIT blend thin film at different energies at C K-edge. The network was prepared with 4 wt% BVTD relative to the PTzBI-oF.

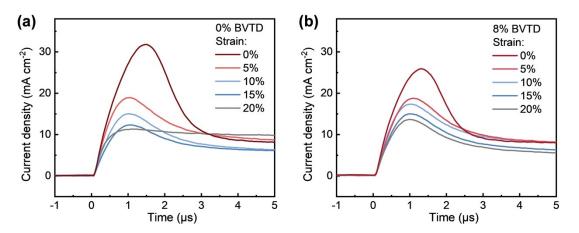




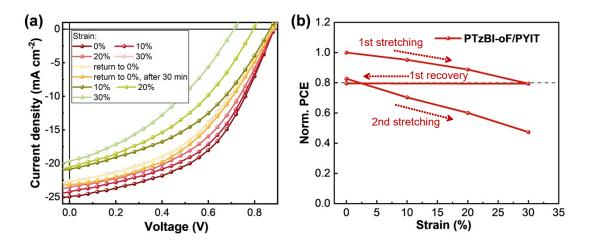

Fig. S13 Peak-fitting for RSoXS Iq^2 -q curves with log-normal functions.

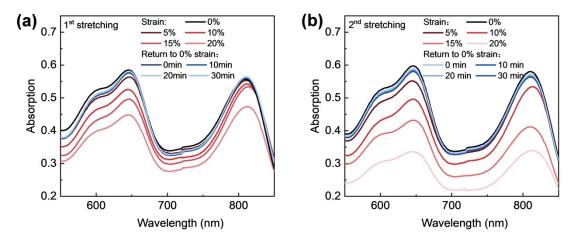

Fig. S14 Snapshots of D/A blended cells with different network densities prepared by varying the BVTD ratio (0%, 4%, and 8%) under stress-strain molecular dynamics simulation (with the displacement of the centroid of a specific PYIT tetramers marked in red).

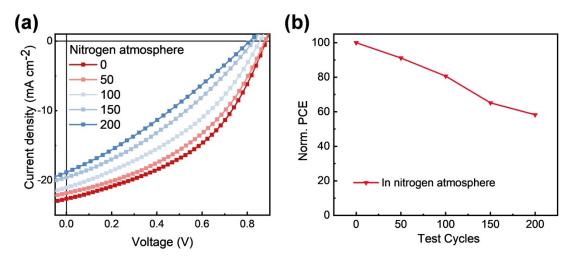

Fig. S15 *J-V* curves of IS-OSC devices of (PTzBI-oF + network)/PYIT blend films under various strains. The network was prepared with 8 wt% BVTD relative to PTzBI-oF.

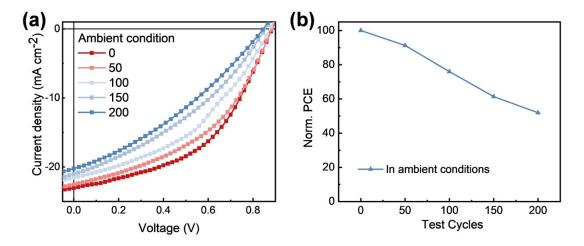

Fig. S16 GIWAXS (a) 2D images and (b) *I-q* curves of (PTzBI-oF + network)/PYIT blend films under various strains. The network was prepared with 4 wt% BVTD relative to PTzBI-oF. GIWAXS was performed with X-ray beam perpendicular (perp.) and parallel (para.) to the strain directions.


Fig. S17 Peak-fitting for GIWAXS *I-q* curves in the (a,c) IP and (b,d) OOP directions of the PTzBI-oF + network blend films under 5% strain.


Fig. S18 Peak-fitting for GIWAXS *I-q* curves in the (a,c) IP and (b,d) OOP directions of the PTzBI-oF + network blend films under 15% strain.


Fig. S19 (a) CCLs and (b) packing numbers (=CCL/d-spacing) of (PTzBI-oF + network)/PYIT blend films under various strains. The network was prepared with 4 wt% BVTD relative to PTzBI-oF. GIWAXS was performed with X-ray beam perpendicular (perp.) and parallel (para.) to the strain directions.


Fig. S20 Photo-CELIV characteristics of IS-OSC devices under various strains: (a) pristine PTzBI-oF/PYIT device; (b) 8%-BVTD network based device.


Fig. S21 (a) *J-V* curves and (b) normalized PCE changes of IS-OSC devices of PTzBI-oF/PYIT blend films under various strains.

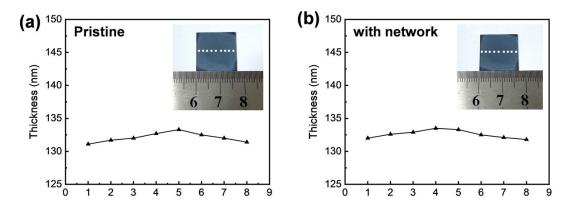

Fig. S22 *In situ* UV-vis-NIR spectra of PTzBI-oF/PYIT thin film prepared with 8% BVTD: (a) 1st stretching-recovery cycle; (b) 2nd stretching-recovery cycle.

Fig. S23 (a) *J-V* curves and (b) corresponding normalized PCE as function of test cycles of IS-OSC devices prepared with 8% BVTD. The stretching-releasing cycles of 20% strain were performed in a nitrogen-filled glove box (25 °C, $O_2 < 5$ ppm, $H_2O < 0.01$ ppm).

Fig. S24 (a) *J-V* curves and (b) corresponding normalized PCE as function of test cycles of IS-OSC devices prepared with 8% BVTD. The stretching-releasing cycles of 20% strain were performed under ambient conditions (25 °C, ~40% RH, atmospheric oxygen).

Fig. S25 Thickness distribution measured at multiple positions across PTzBI-oF/PYIT thin films: (a) pristine film; (b) film incorporating a self-healable network with 8% BVTD. White dots in the insets indicate the locations of profilometer measurements.

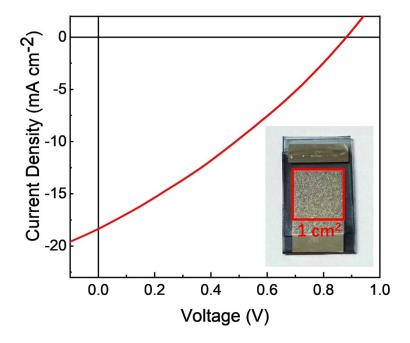


Fig. S26 The *J-V* curve of the 1-cm² IS-OSC device and the image of the device (insert).

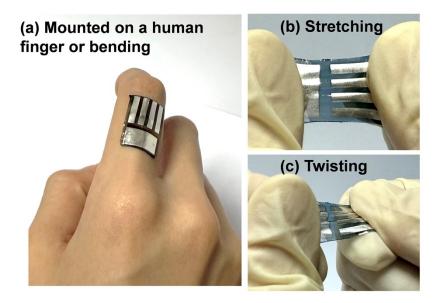


Fig. S27 Visual demonstrations of IS-OSC devices under realistic wearable conditions:

(a) mounted on a human finger or bending; (b) stretching; (c) bending.

Table S1. Mechanisms and healing conditions for different dynamic systems.

Dynamic systems	Diels-Alder adducts	Disulfide exchange	Imine bonds	
Mechanism	Thermally-reversible [4+2] cycloaddition between a conjugated diene and a dienophile, breaking and reforming two C–C bonds.	Reversible thiol— disulfide interchange on an S–S bond	Hydrolysis of imine bonds (C=N) to form amines and aldehydes, followed by condensation	
Healing condition	thermal treatment at 100-150 °C for bond dissociation, followed by a cooling process for re-bonding External heating	Disulfide bonds can react reversibly at low heat or even room temperature	Dynamic covalent bonding dependent on environmental pH and humidity	
References	7-8	9-10	11,12	

Table S2. The hole and electron mobilities of (PTzBI-oF + network)/PYIT blend films measured by SCLC method. The self-healable network was prepared with varying BVTD ratios.

BVTD ratio (%)	$\mu_{\rm h} ({\rm cm^2 V^{\text{-}1} s^{\text{-}1}})$	$\mu_{\rm e} ({\rm cm}^2 {\rm V}^{\text{-1}} {\rm s}^{\text{-1}})$
0	1.44×10 ⁻⁴	2.31×10 ⁻⁴
2	1.02×10 ⁻⁴	1.99×10 ⁻⁴
4	8.29×10 ⁻⁵	1.76×10 ⁻⁴
8	6.95×10 ⁻⁵	1.49×10 ⁻⁴

Table S3. Summary of $J_{\rm ph}$ - $V_{\rm eff}$ parameters of OSC devices based on (PTzBI-oF + network)/PYIT blend films. The self-healable network was prepared with varying BVTD ratios.

P_{diss} (%)
96.12
94.67
92.84
90.11

Table S4. Summary of $1/C^2$ -V plot parameters.

	$N_{\rm A}$ (cm ⁻³)	$V_{\mathrm{bi}}\left(\mathrm{V}\right)$
0%	1.50×10 ¹⁵	1.21
2%	1.57×10^{15}	1.08
4%	1.65×10^{15}	0.98
8%	1.75×10^{15}	0.88

Table S5. Summary of tDOS- E_{ω} plot parameters.

	Peak type	Location (E_t) (eV)	Width (σ)
0%	Gauss	0.3840	0.00836
2%	Gauss	0.3806	0.00895
4%	Gauss	0.3848	0.01004
8%	Gauss	0.3888	0.01131

Table S6. Summary of the fitting results for GIWAXS *I-q* curves of PTzBI-oF/PYIT, and (PTzBI-oF + network)/PYIT films. The self-healable network was prepared with 4 wt% BVTD relative to PTzBI-oF.

			IP		
	Q (Å-1)	d-spacing (Å)	FWHM (Å ⁻¹)	CCL (Å)	Area
PTzBI-oF/PYIT	0.30	20.92	0.17	38.00	2.38
(PTzBI-oF + network)/PYIT	0.30	21.08	0.15	43.91	1.96
			OOP		
	Q (Å-1)	d-spacing (Å)	FWHM (Å ⁻¹)	CCL (Å)	Area
PTzBI-oF/PYIT	1.72	3.70	0.36	17.67	5.99
(PTzBI-oF + network)/PYIT	1.71	3.73	0.34	18.67	5.09

Table S7. Fitting results of RSoXS I-q curves with correlation length model.

Thin film	PTzBI-oF/PYIT	(PTzBI-oF + network)/PYIT
Scale	6.4928	1.1068
Background	0.00044	0.0005
A	1.89E-07	6.12E-09
C	0.001563	0.015934
n	1.7423	2.4854
m	2.7512	2.4421
ζ[Å]	81.68	105.15

Table S8. Mechanical parameters measured from stress-strain curves of PYIT, PTzBI-oF, PTzBI-oF + network, (PTzBI-oF + network)/PYIT films. The self-healable networks were prepared with varying weight ratios of BVTD relative to PTzBI-oF.

Film	COS (%)	Young's modulus (MPa)
PYIT	5.01	175.68
PTzBI-oF	8.89	131.04
PTzBI-oF + network (2% BVTD)	15.59	127.35
PTzBI-oF + network (4% BVTD)	17.56	119.58
PTzBI-oF + network (8% BVTD)	22.41	86.42
PTzBI-oF /PYIT	7.10	164.80
(PTzBI-oF + network (2% BVTD))/PYIT	10.91	141.08
(PTzBI-oF + network (4% BVTD))/PYIT	15.63	122.24
(PTzBI-oF + network (8% BVTD))/PYIT	18.59	103.61

Table S9. *J-V* parameters of IS-OSCs fabricated with (PTzBI-oF + network)/PYIT blend films. The network was prepared with 8 wt% BVTD relative to PTzBI-oF.

Cycle	Strain	$V_{\rm oc}\left({ m V}\right)$	J_{SC} (mA cm ⁻²)	FF (%)	PCE (%)
	0%	0.881	23.09	46.91	9.64
·	10%	0.872	22.76	43.86	8.78
1st	20%	0.871	22.43	41.55	8.20
-	30%	0.855	22.06	40.98	7.72
	40%	0.852	20.78	39.73	7.03
	Return to 0%	0.860	22.14	42.96	8.25
	Return to 0% (after 30 min)	0.876	22.97	46.87	9.53
2nd -	10%	0.867	22.26	44.02	8.58
	20%	0.861	21.64	42.97	8.08
	30%	0.850	21.51	38.82	7.10

Table S10. Summary of the fitting results for GIWAXS I-q curves of PTzBI-oF + network films under 5% and 15% strains. The self-healable network was prepared with 4 wt% BVTD relative to PTzBI-oF.

	IP				
Strain -	q (Å-1)	d-spacing (Å)	FWHM (Å-1)	CCL (Å)	Packing number (CCL/d-spacing)
0%	0.29	21.88	0.073	85.50	3.91
5%-perp	0.28	22.35	0.087	72.54	3.25
5%-para	0.29	21.30	0.080	78.53	3.69
15%-perp	0.28	22.522	0.099	63.75	2.83
15%-para	0.29	21.42	0.080	78.04	3.64

	OOP		
	q (Å-1)	FWHM (Å ⁻¹)	
0%	1.73	0.25	
5%-perp	1.74	0.25	
5%-para	1.76	0.25	
15%-perp	1.73	0.25	
15%-para	1.76	0.25	

Table S11. Summary of photo-CELIV mobilities of PTzBI-oF/PYIT IS-OSC devices under various strains.

Device	0%	5%	10%	15%	20%
pristine	7.51	5.84	4.07	2.60	0.31
8%-BVTD	6.92	5.17	4.68	4.23	3.99

Table S12. *J-V* parameters of IS-OSCs based on PTzBI-oF/PYIT blend film.

Cycle	Strain	$V_{\rm OC}\left({ m V}\right)$	$J_{\rm SC}$ (mA cm ⁻²)	FF (%)	PCE (%)
1st	0%	0.885	24.93	49.01	10.88
	10%	0.883	24.22	48.13	10.36
	20%	0.880	23.54	46.35	9.66
	30%	0.881	22.74	42.86	8.64
2nd	Return to 0%	0.875	22.65	43.44	8.66
	Return to 0% (after 30 min)	0.879	23.14	43.98	9.00
	10%	0.867	20.83	42.28	7.69
	20%	0.795	20.56	39.80	6.54
	30%	0.711	19.65	36.59	5.15

Table S13. Device parameters of IS-OSCs under stretching-releasing cycles of 20% strain in a nitrogen-filled glove box (25 °C, $O_2 < 5$ ppm, $H_2O < 0.01$ ppm).

Test	$V_{\rm OC}$	$J_{ m SC}$	FF	PCE	Norm.
cycles	(V)	(mA cm ⁻²)	(%)	(%)	PCE (%)
0	0.885	23.03	47.92	9.83	100.00
50	0.883	22.52	44.54	8.96	91.15
100	0.876	21.56	42.00	7.93	80.67
150	0.855	21.01	35.71	6.41	65.20
200	0.846	20.23	33.41	5.72	58.18

Table S14. Device parameters of IS-OSCs under stretching-releasing cycles of 20% strain under ambient conditions (~40% RH, atmospheric oxygen).

Test	$V_{\rm OC}$	$J_{ m SC}$	FF	PCE	Norm.
cycles	(V)	(mA cm ⁻²)	(%)	(%)	PCE (%)
0	0.884	22.65	44.03	8.82	100.00
50	0.878	21.84	41.71	8.00	91.27
100	0.854	21.02	37.29	6.70	75.96
150	0.828	19.58	33.40	5.41	61.34
200	0.811	18.86	29.95	4.58	51.93

References:

- [1] E. C. Montoto, Y. Cao, K. Hernández-Burgos, C. S. Sevov, M. N. Braten, B. A. Helms, J. S. Moore, J. Rodríguez-López, *Macromolecules* **2018**, *51*, 3539.
- [2] Y. Amamoto, H. Otsuka, A. Takahara, K. Matyjaszewski, *Adv. Mater.* **2012**, *24*, 3975.
- [3] J. Ilavsky, J. Appl. Crystallogr. 2012, 45, 324.

- [4] X. Luo, G. Freychet, Z. Gan, K. An, H. Du, C. Wang, N. Li, W. Zhong, L. Ying, *Macromolecules* **2023**, *56*, 8928.
- [5] T. Lu and F. Chen, *Journal of Computational Chemistry*, 2012, **33**, 580–592.
- [6] W. Humphrey, A. Dalke and K. Schulten, *Journal of Molecular Graphics*, 1996, **14**, 33–38.
- [7] J. Zhang, Y. Niu, C. Huang, L. Xiao, Z. Chen, K. Yang and Y. Wang, *Polymer Chemistry*, 2012, **3**, 1390-1393.
- [8] R. Zheng, Y. Wang, C. Jia, Z. Wan, J. Luo, H. A. Malik, X. Weng, J. Xie and L. Deng, *ACS Appl. Mater. Interfaces*, 2018, **10**, 35533-35538.
- [9] Y. Amamoto, H. Otsuka, A. Takahara, K. Matyjaszewski, *Adv. Mater.* **2012**, 24, 3975
- [10] N. J. Bongiardina, S. M. Soars, M. Podgorski, C. N. Bowman, *Polymer Chemistry* **2022**, *13*, 3991
- [11] P. Wang, L. Yang, B. Dai, Z. Yang, S. Guo, G. Gao, L. Xu, M. Sun, K. Yao and J. Zhu, Eur. Polym. J., 2020, 123, 109382.
- [12] X. Cao, P. Zhang, N. Guo, Y. Tong, Q. Xu, D. Zhou and Z. Feng, *RSC Advances*, 2021, **11**, 2985-2994.