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Methods 

Materials. PM6 and L8-BO were purchased from Solarmer Materials (Beijing, China). DTY-2F 

was synthesized in our group. P(o-tol)3 was purchased from Energy Chemical and Pd2(dba)3 was 

purchased from Leyan.com. [2-(9H-Carbazol-9-yl)ethyl] phosphonic acid (2PACz) was purchased 

from Aladdin. All purchased materials were used without further purification.

Device fabrication. Organic solar cells were fabricated with a conventional structure of 

ITO/2PACz/Active layer/PNDIT-F3N/Ag. ITO substrates were treated in detergent, deionized 

water, acetone and isopropanol for 15 min via the ultrasonic method and then dried in an oven for 

2 hours. The precleaned substrates were treated with plasma for 2 min, then 2PACz (0.3 mg mL−1 

in ethanol) was spin-cast on top of ITO surface at 3000 rpm for 30 s and annealed at 100 °C for 8 

min. PM6 and L8-BO solution were dissolved in chloroform solvent with concentration of 15 mg/ml 

and 21 mg/ml, respectively. For devices with PM6+DYT-2F/L8-BO, PM6 and DYT-2F were 

dissolved in chloroform with a weight ratio of 1:0.1. In the case of D18/L8-BO, D18 was dissolved 

in chlorobenzene with a concentration of 12 mg/ml and L8-BO solution is prepared as mentioned 

above. 0.5% DIO was used as the solvent additive for acceptor solution. To prepare OSCs with 

different thickness, the donor and acceptor solution were spin-cast on 2PACz surface in sequency 

at rotation rate of 3200/2000 rpm (90/210 nm), 2600/2600 rpm (120/180 nm), 2000/3200 rpm 

(150/150 nm), and 1500/4000 rpm (180/120 nm), respectively. For the fabrication of blade-coated 

PM6+DYT-2F/L8-BO films, the platform needs to be continuously heated at 50 °C. PM6+DYT-2F 

solution (w/w, 16 mg/mL in o-xylene) was blade-coated onto the 2PACz-coated substrates with a 

speed of 22 mm/s and then annealed for 1 min. The L8-BO solution (22 mg/mL in o-xylene) was 

blade-coated on top of donor layer with a speed of 29 mm/s. Subsequently, the active layer was 

thermal annealed at 80 °C for 8 min, PNDIT-F3N solution dissolved in methanol and acetic acid 

(200:1) with a concentration of 1.2 mg/ml was spin-cast on the active layer at 4200 rpm for 30 s. 

Finally, the Ag electrode (110 nm) was deposited by thermal evaporation under vacuum condition 

of ~3×10-4 Pa. 

Device measurement. The J–V curves were measured from -0.5 to 1 V with a scan step of 50 mV 



and a dwell time of 10 ms, along the forward scan direction, using a Keithley 2400 Source Measure 

Unit. The photovoltaic performance of all the OSCs was measured in a N2-filled glove box at room 

temperature (ca. 25 Celsius degree) using an Air Mass 1.5 Global (AM 1.5 G) solar simulator (SS-

F5-3A, Enlitech) with an irradiation intensity of 100 mW cm-2, which was measured by a calibrated 

silicon solar cell (SRC2020, Enlitech). The J–V curves were measured from -0.5 to 1 V with a scan 

step of 50 mV and a dwell time of 10 ms in a forward scan direction by using a Keithley 2400 

Source Measure Unit. EQE spectra were measured by using a solar-cell spectral-response 

measurement system (QE-R3011, Enlitech). The active area of devices is 5.12 mm2. The devices 

were tested through a mask with an area of 3.152 mm2.

Exciton diffusion length measurements. In general, the equation of   ( represents LD = D

exciton lifetime and D is the diffusion constant) is used to calculate the diffusion length. Increaseing 

fluence densities can accelerate decay of GSB signals, which is attributed to the exciton-exciton 

annihilation (EEA). When the bimolecular recombination is considered, the dynamic decay of 

excitons can be described as follows

dn(t)
dt

=- kn(t) -
1
2
n2(t)

with the solution of

n(t) =
n(0)e - kt

1 +


2k
n(0)[1 - e - kt]

where n(t) is the exciton density as a function of delay time, k = 1/ is the monomolecular decay 

rate constant, and  is the bimolecular recombination rate constant aroused from EEA. Next, the 3D 

exciton diffusion coefficient was estimated by using the formula of , where R is the radius 
𝐷=


8𝑅

of EEA.

Trap density measurement. The defects density can be calculated form capacitance spectroscopy 

measurement in dark environment. The frequency axis can be scaled to energy axis as the follows



𝐸

= 𝑘𝑇𝑙𝑛(20 )

where 𝜔 is the angular frequency calculated by 𝜔 = 2𝜋𝑓, 𝜈0 is the attempt-to-escape frequency of 

109 Hz, k is the Boltzmann constant, T is the thermodynamic temperature. The trap density at energy 

𝐸 can be acquired as

𝑁𝑡(𝐸) =‒
𝑉𝑏𝑖

𝑞𝑑
𝑑𝐶
𝑑


𝑘𝑇

d is the thickness of the active layer and 𝑉bi is the built-in voltage measured through Mott–Schottky 

characterization. Then the energy distribution for the density of states (DoS) can be described with 

Gaussian shape distribution

𝑁𝑡(𝐸) =
𝑁𝑡

2
𝑒𝑥𝑝[ ‒ (𝐸𝑡 ‒ 𝐸)2

22 ]
where 𝑁t is the total density, 𝐸t is the center of the DoS, 𝜎 is the disorder parameter.

Time-Resolved Photoluminescence (TRPL) Spectra Measurement. The TRPL spectra 

measurements were performed through a laser-scanned confocal imaging microscopy (Nanofinder 

FLEX2, Tokyo Instruments, Inc.) combined with a time-correlated single-photon counting 

(TCSPC) module (Becker & Hickl, SPC-150). The 800 nm pulsed laser was focused by an objective 

lens (50×) into a near diffraction-limited spot to excite the samples. A neutral density filter coupled 

with a power meter was used to regulate the excitation density at samples. The fluorescence signals 

were collected by the high-resolution detectors. Herein, the appropriate optical filters were 

employed to realize excitonic PL collection with > 800 nm for “edge state” emission. Furthermore, 

the two-dimensional (2D) TRPL scanning consists of6 32×32 pixels. The samples were 

encapsulated in a high-purity N2-filled glove box for TRPL measurements.

Steady-state and ultrafast transient absorption (TA) spectroscopy. The steady-state absorption 

spectra of the samples were recorded on an Agilent Cary 5000 spectrophotometer. Femtosecond 

transient absorption spectroscopy is based on an Ultrafast Helios pump-probe optical system (the 

nonlinear frequency mixing techniques, a fiber-coupled multichannel spectrometer and so on) 

combined with a regenerative amplified Ti:sapphire laser system from Coherent (800 nm, 100 fs, 7 



mJ/pluse and 1 KHz repetition rate). The delay between pump and probe pulses can be controlled 

by a motorized delay stage, leading to a maximum delay time of 8 ns. The intensity of pump pulse 

can be tailored by a variable neutral density filter wheel and measured by a power meter. The 

samples were encapsulated in a high-purity N2-filled glove box for TA measurements.

Atomic force microscopy (AFM) and grazing incidence wide-angle X-ray scattering 

(GIWAXS) measurement. AFM measurements were performed on a Dimension Icon AFM 

(Bruker) in a tapping mode under ambient conditions. Grazing incident wide-angle X-ray scattering 

(GIWAXS) measurements were conducted at beamline 7.3.3 at the Advanced Light Source 

(samples were prepared on Si substrates using identical preparation conditions as those used in 

devices). The X-ray beam was incident at a grazing angle from 0.12° to 0.16°. The X-ray data was 

supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. 

Department of Energy under Contract No. DE-AC02- 05CH11231. The authors thank Chenhui Zhu 

at beamline 7.3.3 for assistance with data acquisition. Resonant Soft X-ray Scattering (RSoXS) 

transmission measurements were performed at beamline 11.0.1.2 at the Advanced Light Source 

(ALS). (Samples for were prepared on a PSS modified Si substrate under the same conditions as 

those used for device fabrication, and then transferred by floating in water to a 1.5 mm × 1.5 mm, 

100 nm thick Si3N4 membrane supported by a 5 mm × 5 mm, 200 μm thick Si frame (Norcada 

Inc.). 2-D scattering patterns were collected on an in-vacuum CCD camera (Princeton Instrument 

PI-MTE). The sample detector distance was calibrated from diffraction peaks of a triblock 

copolymer poly(isoprene-b-styrene-b-2-vinyl pyridine), which has a known spacing of 391 Å. The 

beam size at the sample is approximately 100 μm by 200 μm).

Ultraviolet–visible (UV-vis) spectroscopy measurement. UV-vis absorption spectra of the 

pristine and blend films were acquired with a UV-vis spectrophotometer (Shimadzu UV-3700). 
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Supplementary Figure 1. Thickness results of 314 nm films from a surface profilometer.
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Supplementary Figure 2. Thickness results of 101 nm, 126 nm, 146 nm, and 174 nm films 
from a surface profilometer.
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Supplementary Figure 3. The variation of Jsc and FF values with different donor and acceptor 
layer thicknesses (Error bars represent the standard error of the mean (n = 20)).
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Supplementary Figure 4. (a) Jsc and (b) Voc versus light intensity characteristics of PM6/L8-
BO devices fabricated with different donor layer thicknesses (the total thickness of active layer 
for devices is 300 nm).
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Supplementary Figure 5. The plots of DoS as a function of energy and corresponding 
Gaussian fitting curves for PM6/L8-BO devices with different donor and acceptor layer 
thicknesses.
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Supplementary Figure 6. The photocurrent density (Jph) versus effective voltage (Veff) 
characteristics of PM6/L8-BO devices fabricated with different donor and acceptor layer 
thicknesses.
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Supplementary Figure 7. (a) J-V curves and (b) corresponding EQE spectra for D18/L8-BO 
devices fabricated with different donor and acceptor layer thicknesses.
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Supplementary Figure 8. (a) J-V curves and (b) corresponding EQE spectra for PM6/Y6 
devices fabricated with different donor and acceptor layer thicknesses.
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Supplementary Figure 9. Thickness results of 147 nm, 205 nm, 253 nm, and 293 nm films 
from a surface profilometer.
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Supplementary Figure 10. J-V curves for binary and ternary devices with total thickness of 
500 nm.
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Supplementary Figure 11. (a)-(d) 2D TAS image of PM6/L8-BO films with different donor 
and acceptor layer thicknesses pumped at 400 nm.
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Supplementary Figure 12. (a) 2D TAS image and (b) the corresponding TAS spectra of PM6 
neat film over time. 
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Supplementary Figure 13. (a) 2D TAS image and (b) the corresponding TAS spectra of L8-
BO neat film over time. 
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Supplementary Figure 14. (a)-(d) The TAS spectra of PM6/L8-BO thick films with different 
donor and acceptor layer thicknesses over time. 
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Supplementary Figure 15. (a)-(d) Normalized TAS dynamic curves probed at 870 nm and 
940 nm for PM6/L8-BO thick films with different donor and acceptor layer thicknesses.
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Supplementary Figure 16. Normalized TAS dynamic curves probed at 870 nm and 940 nm 
for L8-BO neat film.



(a) (b) (c) (d)

(e) (f) (g) (h)

500 600 700 800 900 1000 1100 1200

-20

-10

0

10

20


A

 (m
O

D
)

Wavelength (nm)

 500 fs
 1 ps
 10 ps
 50 ps
 500 ps
 1 ns

120/180 nm
Pump at 800 nm

500 600 700 800 900 1000 1100 1200

-10

0

10

20

30


A

 (m
O

D
)

Wavelength (nm)

 500 fs
 1 ps
 10 ps
 50 ps
 500 ps
 1 ns

90/210 nm
Pump at 800 nm

500 600 700 800 900 1000 1100 1200
-30

-20

-10

0

10

20


A

 (m
O

D
)

Wavelength (nm)

 500 fs
 1 ps
 10 ps
 50 ps
 500 ps
 1 ns

150/150 nm
Pump at 800 nm

500 600 700 800 900 1000 1100 1200
-30

-20

-10

0

10

20


A

 (m
O

D
)

Wavelength (nm)

 500 fs
 1 ps
 10 ps
 50 ps
 500 ps
 1 ns

180/120 nm
Pump at 800 nm

500 600 700 900 1000 1100
0.1

1

10

100

1000

Wavelength (nm)

De
lay

 T
im

e (
ps

)

-2 -0.2 2

A (mOD)180/120 nm
Pump at 800 nm

500 600 700 900 1000 1100
0.1

1

10

100

1000

Wavelength (nm)

De
lay

 T
im

e (
ps

)

-2 -0.2 2

A (mOD)120/180 nm
Pump at 800 nm

500 600 700 900 1000 1100 1200
0.1

1

10

100

1000

Wavelength (nm)

De
lay

 T
im

e (
ps

)

-2 -0.2 2

A (mOD)150/150 nm
Pump at 800 nm

500 600 700 900 1000 1100
0.1

1

10

100

1000

Wavelength (nm)

De
lay

 T
im

e (
ps

)

-2 -0.2 2

A (mOD)90/210 nm
Pump at 800 nm

Supplementary Figure 17. (a)-(d) 2D TAS image and (e)-(f) the corresponding TAS spectra 
of PM6/L8-BO films with different donor and acceptor layer thicknesses pumped at 800 nm 
over time. 
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Supplementary Figure 18. (a) 2D TAS image and (b) the corresponding TAS spectra of L8-
BO neat film probed at the visible light range. 
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Supplementary Figure 19. Dynamic profiles of singlet excitons of L8-BO pumped at different 
fluence densities.
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Supplementary Figure 20. Dynamic profiles of singlet excitons of PM6 pumped at different 
fluence densities.
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Supplementary Figure 21. (a) 2D TAS image and (b) the corresponding TAS spectra of D18 
neat film over time. 
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Supplementary Figure 22. Dynamic profiles of singlet excitons of D18 pumped at different 
fluence densities.
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Supplementary Figure 23. Steady-state PL spectra of PM6/L8-BO blend films with different 
donor and acceptor layer thicknesses.
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Supplementary Figure 24. Normalized TRPL spectra of PM6 neat film probed at 675 nm.
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Supplementary Figure 25. Normalized decay curves probed at 805 nm for L8-BO neat film 
pumped at 800 nm. 
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Supplementary Figure 26. SCLC curves of (a) electron-only devices and (b) hole-only devices 
for PM6/L8-BO thick-film OSCs with different donor and acceptor layer thicknesses.
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Supplementary Figure 27. UV-vis absorption spectra for (a) L8-BO film and (b) PM6 film 
with different thicknesses. (c) UV-vis absorption spectra of PM6 and L8-BO in chloroform 
solution with same concentration.
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Supplementary Figure 28. The absorption intensity ratio of 0-0 peak and 0-1 peak for 
PM6/L8-BO blend thick film with different donor and acceptor layer thicknesses.
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Supplementary Figure 29. The schematic morphology evolution for the layer-by-layer 
processed thick films.
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Supplementary Figure 30. Changes of normalized absorption intensity between 0.1 s and 60 
s extracted from in-suit absorption spectra for PM6/L8-BO film fabricated with different donor 
and acceptor layer thicknesses.
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Supplementary Figure 31. Film-depth-dependent light absorption spectra of PM6/L8-BO 
blend films based on different donor and acceptor layer thicknesses.



0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

C
om

po
ne

nt
 r

at
io

 (w
/w

)

Depth (nm)

 Donor
 Acceptor90/210 nm

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

C
om

po
ne

nt
 r

at
io

 (w
/w

)

Depth (nm)

 Donor
 Acceptor120/180 nm

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

C
om

po
ne

nt
 r

at
io

 (w
/w

)

Depth (nm)

 Donor
 Acceptor150/150 nm

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

C
om

po
ne

nt
 r

at
io

 (w
/w

)

Depth (nm)

 Donor
 Acceptor180/120 nm

(a) (b)

(c) (d)

Supplementary Figure 32. The composition profiles extracted from the FLAS spectra of 
PM6/L8-BO blend films based on different donor and acceptor layer thicknesses.
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Supplementary Figure 33. Exciton generation contours of PM6/L8-BO blend films based on 
different donor and acceptor layer thicknesses.
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Supplementary Figure 34. One-dimensional line curves of GIWAXS patterns with respect to 
the OOP and IP directions of PM6/L8-BO films with different donor and acceptor layer 
thicknesses.
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Supplementary Figure 35. AFM phase images of PM6/L8-BO film with different donor and 
acceptor layer thicknesses.
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Supplementary Figure 36. Molecular structure of DYT-2F.
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Supplementary Figure 37. MS (MALDI-TOF) spectrum of DYT-2F.
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Supplementary Figure 38. The photocurrent density (Jph) versus effective voltage (Veff) 
characteristics of PM6/L8-BO devices with and without DYT-2F.
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Supplementary Figure 39. (a) Jsc and (b) Voc versus light intensity characteristics of PM6/L8-
BO devices with and without DYT-2F.
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Supplementary Figure 40. Normalized TAS dynamic curves probed at 630 nm and 805 nm 
for PM6+DYT-2F/L8-BO thick films pumped at 800 nm.
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Supplementary Figure 41. (a) 2D TAS image and (b) the corresponding TAS spectra of 
PM6+DYT-2F/L8-BO thick film over time. 



Supplementary Figure 42. Certification report of PM6+DYT-2F/L8-BO thick-film (300 nm) 
device by National Institute of Metrology (NIM), China.
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Supplementary Figure 43. J-V curves of thick-film devices based on D18+DYT-2F/L8-BO 
and PM6+DYT-2F/Y6. 
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Supplementary Figure 44. (a) J-V curves and (b) corresponding EQE spectra for PM6+DYT-
2F/L8-BO devices with large area (1 cm2). 



Supplementary Table 1. Gaussian fitting parameters devices based on PM6/L8-BO with 
different donor and acceptor layer thicknesses.

Active layer Nt (cm-3 eV-1)  (meV) Et (eV)

90/210 nm 0.991017 3.21 0.150

120/180 nm 1.321017 4.50 0.152

150/150 nm 1.631017 5.90 0.150

180/120 nm 1.771017 6.46 0.150

Supplementary Table 2. Summary of photovoltaic parameters of thick-film OSC devices 
based on D18/L8-BO.

Active layer
Voc

(V)
Jsc

(mA cm-2)
FF
(%)

PCEa)

(%)

D18/L8-BO (90 nm/210 nm)
0.889

0.8890.001
26.21

25.960.23
75.7

75.10.2
17.56

17.330.14

D18/L8-BO (120 nm/180 nm)
0.893

0.8900.001
27.09

27.000.17
74.1

73.80.2
17.92

17.730.10

D18/L8-BO (150 nm/150 nm)
0.889

0.8900.001
27.32

27.090.19
71.8

71.50.3
17.44

17.250.14

D18/L8-BO (180 nm/120 nm)
0.890

0.8900.002
27.01

26.810.21
69.6

69.30.3
16.73

16.540.13
a) Average values with standard deviation were obtained from 20 devices.

Supplementary Table 3. Summary of photovoltaic parameters of thick-film OSC devices 
based on PM6/Y6.

Active layer
Voc

(V)
Jsc

(mA cm-2)
FF
(%)

PCEa)

(%)

PM6/Y6 (90 nm/210 nm)
0.811

0.8110.002
28.28

28.030.24
66.6

66.40.1
15.27

15.100.13

PM6/Y6 (120 nm/180 nm)
0.809

0.8090.001
28.81

28.630.15
66.4

66.30.1
15.47

15.350.08

PM6/Y6 (150 nm/150 nm)
0.813

0.8110.002
29.19

28.920.14
65.2

65.10.1
15.47

15.260.10

PM6/Y6 (180 nm/120 nm)
0.802

0.8050.002
28.43

28.030.29
64.4

64.20.2
14.68

14.490.15
a) Average values with standard deviation were obtained from 10 devices.



Supplementary Table 4. Summary of photovoltaic parameters of thick-film OSC devices with 
thickness of 500 nm.

Active layer
Voc

(V)
Jsc

(mA cm-2)
FF
(%)

PCEa)

(%)

PM6/L8-BO (150 nm/350 nm)
0.857

0.8570.001
26.53

26.310.14
65.4

65.30.2
14.87

14.720.09

PM6/L8-BO (200 nm/300 nm)
0.858

0.8580.001
27.27

27.100.21
66.9

66.70.1
15.65

15.500.12

PM6/L8-BO (250 nm/250 nm)
0.860

0.8590.001
27.70

27.230.46
63.1

62.80.2
15.03

14.700.25

PM6/L8-BO (300 nm/200 nm)
0.861

0.8590.002
26.18

25.840.27
52.0

51.90.2
11.72

11.520.12

D18/L8-BO (150 nm/350 nm)
0.875

0.8750.002
26.26

26.020.15
66.4

66.20.2
15.26

15.110.10

D18/L8-BO (200 nm/300 nm)
0.881

0.8800.001
26.60

26.440.18
67.2

67.00.2
15.74

15.580.17

D18/L8-BO (250 nm/250 nm)
0.881

0.8810.001
26.91

26.800.11
64.2

64.10.2
15.22

15.090.14

D18/L8-BO (300 nm/200 nm)
0.883

0.8820.001
26.19

25.880.22
61.9

61.30.3
14.31

14.050.21

PM6+DYT-2F/L8-BO 
0.867

0.8670.001
27.68

27.480.44
67.5

67.10.3
16.20

15.970.23
a) Average values with standard deviation were obtained from 20 devices.

Supplementary Table 5. Global fitting parameters of L8-BO, PM6, and D18 neat films.

Materials  (ps) k (s-1)  (cm3/s) LD (nm)

L8-BO 400 2.50109 3.6310-8 24.04

PM6 210 4.76109 2.8310-8 15.38

D18 143 6.99109 5.6010-8 17.85



Supplementary Table 6. Summary of hole lifetimes and hole transfer rates based on different 
active layers.

Active layer  (ps) kHT (1010 s-1) ht (%)

L8-BO 5.17 / /

PM6/L8-BO (90 nm/210 nm) 4.67 2.07 71.2

PM6/L8-BO (120 nm/180 nm) 4.45 3.13 69.2

PM6/L8-BO (150 nm/150 nm) 3.83 6.75 67.8

PM6/L8-BO (180 nm/120 nm) 2.98 14.20 62.1

PM6+DYT-2F/L8-BO 4.70 1.93 68.4

Supplementary Table 7. Summary of electron lifetimes and electron transfer rates based on 
different active layers.

Active layer  (ps) kET (1010 s-1) et (%)

PM6 98.7 / /

PM6/L8-BO (90 nm/210 nm) 42.3 1.35 57.1

PM6/L8-BO (120 nm/180 nm) 44.7 1.22 54.7

PM6/L8-BO (150 nm/150 nm) 47.1 1.11 52.2

PM6/L8-BO (180 nm/120 nm) 63.9 0.55 35.3

PM6+DYT-2F/L8-BO 42.0 1.37 57.5

Supplementary Table 8. Average electron and hole mobilities for PM6/L8-BO thick-film 
devices with different donor and acceptor layer thickness. 

Active layer
Hole mobility

μh (10-4cm2 V−1 s−1)
Electron mobility
μe (10-4cm2 V−1 s−1)

μe/μh

90/210 nm 8.94 8.03 0.90

120/180 nm 8.36 9.34 1.12

150/150 nm 8.03 10.05 1.25

180/120 nm 8.02 11.17 1.39



Supplementary Table 9. Crystal Coherence lengths and the d-spacing for the PM6/L8-BO 
thick films with different donor and acceptor layer thickness.

IP OOP

q

(Å−1)

d-spacing

(Å)

FWHM

(Å−1)

CCL

(Å)

q

(Å−1)

d-spacing

(Å)

FWHM

(Å−1)

CCL

(Å)

90/210 nm 0.304 20.66 0.077 73.44 1.774 3.54 0.507 11.15

120/180 nm 0.301 20.87 0.076 74.41 1.764 3.56 0.454 12.45

150/150 nm 0.300 20.94 0.076 74.41 1.762 3.57 0.445 12.71

180/120 nm 0.300 20.94 0.075 75.40 1.754 3.58 0.430 13.15

Supplementary Table 10. Summary of photovoltaic parameters of thick-film OSC devices 
based on D18+DYT-2F/L8-BO and PM6+DYT-2F/Y6.

Active layer
Voc

(V)
Jsc

(mA cm-2)
FF
(%)

PCEa)

(%)

D18+DYT-2F/L8-BO
0.907

0.9060.001
27.20

27.060.20
75.5

75.30.2
18.63

18.480.10

PM6+DYT-2F/Y6 
0.819

0.8180.001
28.73

28.530.19
69.5

69.40.2
16.35

16.190.10
a) Average values with standard deviation were obtained from 20 devices.

Supplementary Table 11. Summary of photovoltaic performance parameters of thick-film 
OSCs. 

Thickness system
Thickness

(nm)
PCE
(%)

References

PM6:Y6 300 13.60 [1]

PM6:Y6 250 14.1 [1]

PM7:MF1 312 12.03 [2]

PM7:MF1 445 11.11 [2]

PM7:MF1 510 10.07 [2]
PM7:MF2 308 12.34 [2]

PM7:MF2 438 11.04 [2]

PM7:MF2 500 10.04 [2]

PM6:BP4T-4F:BP3T-4F 300 16.03 [3]
PM6: Y6:BTP-M 300 14.23 [4]

PM6:BTP-eC9 300 16.25 [5]

PM6:BTP-eC9 400 15.12 [5]



PM6:BTP-eC9 500 14.37 [5]

D18:Y6:PC61BM 300 16.32 [6]

PM6:BTP-eC9:L8-BO-F 300 17.31 [7]

D18:BTR-Cl:Y6 308 15.50 [8]

Si25:Y14 430 15.39 [9]

Si25:Y14 600 15.03 [9]

PBDB-T-2Cl:BP-4F:MF1 300 14.57 [10]
PM6:F-2Cl 263 12.29 [11]
PM6:F-2Cl 519 11.41 [11]

PM6:BTP-eC9:L8-BO:BTP-S10 305 17.55 [12]

D18:ZW1:Y6 200 17.83 [13]

D18:ZW1:Y6 250 17.61 [13]

D18:ZW1:Y6 293 16.67 [13]

D18:ZW1:Y6 493 15.56 [13]

PM6:L8-BO 300 17.80 [14]

PM6:αBTCl:L8-BO 330 17.46 [15]

PM6:L8-BO:DY-TF 300 18.23 [16]

PM6:L8-BO 305 17.53 [17]

PM6+PS:L8-BO 300 18.15 [18]

D18:L8-BO 500 16.00 [19]

D18:L8-BO 220 17.70 [19]

D18:L8-BO 300 16.90 [19]

D18:L8-BO 400 16.30 [19]

PM6+DYT-2F/L8-BO 300 18.92 Thick work

PM6+DYT-2F/L8-BO 500 16.20 Thick work
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