Supplementary Information

Non-linear spin correlation to intermediates in enhanced

electrochemical nitrate reduction under magnetic fields

Dongsheng Shao,^{†a,b} Qian Wu,^{†a} Yuwei Zhang,^{†a} Xiyang Cai,^a Chencheng Dai,^a Siyuan Zhu,^a Fanxu Meng,^a Pengfei Song,^a Xiaoning Li,^b Xiaoming Ren,^c Tianze Wu^{*a} and Zhichuan J. Xu^{*a,d}

^a School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

^b Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia

^c State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816 (China)

^d The Centre of Advanced Catalysis Science and Technology, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

† These authors contributed equally: Dongsheng Shao, Qian Wu, Yuwei Zhang

* Corresponding authors. E-mail address: xuzc@ntu.edu.sg (Z. Xu), tianze.wu@ntu.edu.sg (T. Wu)

This PDF file includes:

Supplementary text Figs. S1 to S28 Tables S1 to S3

Supplementary text

Determination of nitrite

Nitrite concentration was quantified using UV-Vis spectrophotometry. The color reagent was prepared by dissolving 0.4 g of p-aminobenzenesulfonamide, 0.02 g of N-(1-naphthyl) ethylenediamine dihydrochloride and 1 mL of phosphoric acid in 5 mL of deionized water. For the measurement, 2.5 mL of the diluted electrolyte was mixed with 0.1 mL of color reagent, and after 40 minutes at room temperature, the absorption spectrum was recorded at 540 nm using a UV-vis spectrophotometer (UV-2700). Nitrite concentration was determined by comparison to a standard curve of ammonium chloride solutions.

Calculation of NO_2^- yield rate and FE

 NO_2^- yield rate (ug h⁻¹ cm⁻²) = (c_{NO2}⁻ × V) / (t × S)

 $\text{FE}_{\text{NO2}^-} = (n \times F \times c_{\text{NO2}^-} \times V) / (M \times Q) \times 100 \%$

where $c_{NO2^{-}}$ (µg mL⁻¹) is the measured nitrite concentration, V (mL) is the electrolyte volume in the cathodic compartment, t (h) is the electrochemical reduction time, S is the geometric surface area of WE, n is the number of electrons transferred (n = 2), F is the Faraday constant (96485 C mol⁻¹), M is the relative molecular mass of NO₂⁻ and Q (C) is the total charge of applied electricity.

¹⁵N Isotope labeling experiment

To confirm the ammonia source, the ¹⁵N isotopic labeled nitrate (Na¹⁵NO₃, 99.99%) was used in the electrochemical reduction experiments. The electrolyte consisted of 0.5 M Na₂SO₄ and 0.1 M Na¹⁵NO₃. After electrochemical reduction, 2 mL electrolyte with obtained ¹⁵NH₄⁺⁻¹⁵N was taken out and its pH was adjusted to 2 before analysis. 500 μ l of sample solution and 56 μ l of D₂O were mixed for the test by ¹H NMR (400 MHz). Similarly, the ¹⁴NH₄⁺⁻¹⁴N was tested by this method when Na¹⁴NO₃ was used as a reactant. The ¹H NMR spectra of ¹⁵NH₄⁺ and ¹⁴NH₄⁺ showed typical double peaks and typical triple peaks, respectively.

In-situ ATR-FTIR tests

The in-situ ATR-FTIR tests were taken using a Bruker Vertex 80 instrument installed with an electrochemical VeeMax III apparatus from PIKE. A liquid nitrogen-cooled MCT detector was used. A Si prism evaporated with a 5 nm Ti layer and a 25 nm Au layer by an e-beam metal evaporator was used to reflect the signal at 60-degree angle. The catalysts were drop-casted onto the surface of the prism and used as WE. An Ag/AgCl (saturated KCl) and Pt wire served as RE and CE, respectively. The electrolyte of 0.5 M Na₂SO₄ + 0.1 M NaNO₃ was used. The in-situ spectra were recorded at various applied potentials.

Operando Raman tests

Operando Raman tests were performed on an i-Raman[®] Plus 785H Raman spectrometer with a laser wavelength of 785 nm. The catalyst was drop-cast onto a glassy carbon electrode as the WE, of which the plane was set perpendicular to the incident laser. An Ag/AgCl (saturated KCl) and Pt wire were used as RE and CE, respectively. The electrolyte of 0.5 M Na₂SO₄ + 0.1 M NaNO₃ was used. The spectrum was acquired under different potentials.

Fig. S1 PXRD pattern of as-prepared $CuFe_2O_4$ spinel oxide at ambient conditions.

Fig. S2 FESEM images of as-prepared $CuFe_2O_4$ spinel oxide at the scale of 500 nm.

Fig. S3 FESEM images of the as-prepared $CuFe_2O_4$ spinel oxide at the scale of (a) 1µm, (b) 5µm. EDS mapping of $CuFe_2O_4$ for (c) Cu, Fe, and O, (d) Cu, (e) Fe, and (f) O elements.

Fig. S4 Illustration of the experimental set-up under an external magnetic field during NO₃⁻RR.

Fig. S5 UV-vis absorption spectra for different concentrations of ammonia-N (a) and the corresponding standard absorbance-ammonia concentration curve (b) NH_4Cl was used as ammonia-N sources for standard curve test.

Fig. S6 NH₃ yield rate (a), NH₃ FE (b), and NH₃ partial current (c) of Fe₃O₄ with and without a constant magnetic field of 2500 Oe at various applied potentials. NH₃ yield rate (d), NH₃ FE (e), and NH₃ partial current (f) of Cu foil with and without a constant magnetic field of 2500 Oe at various applied potentials.

Fig. S7 Comparison of NH_3 yield rate on CP (Carbon paper) and CFO/CP (CuFe₂O₄ catalyst loading on the carbon paper) after electrocatalysis for 0.5h with and without a constant magnetic field of 2500 Oe at -1.1 V vs RHE.

Fig. S8 CV curves of CuFe₂O₄ (a) without and (c) with a constant magnetic field of 2500 Oe at various scan rates of 10, 20, 40, 60, 80 and 100 mV s⁻¹. Plots of the current density versus the scan rate for CuFe₂O₄ (b) without and (d) with a constant magnetic field of 2500 Oe. The measured double-layer capacitances are determined to be 0.102 mF cm⁻² for CuFe₂O₄ without magnetic field and 0.101 mF cm⁻² for CuFe₂O₄ without magnetic field and 0.101 mF cm⁻² for CuFe₂O₄ with magnetic field. Assuming the specific capacitance of the catalyst as 40 μ F cm⁻², the electrochemical active surface area (ECSA) of CuFe₂O₄ without and with magnetic field are calculated as 2.55 and 2.525 cm²_{ECSA}, respectively.

Fig. S9 CV curves of Fe₃O₄ (a) without and (c) with a constant magnetic field of 2500 Oe at various scan rates of 10, 20, 40, 60, 80 and 100 mV s⁻¹. Plots of the current density versus the scan rate for Fe₃O₄ (b) without and (d) with a constant magnetic field of 2500 Oe. The measured double-layer capacitances are determined to be 0.204 mF cm⁻² for Fe₃O₄ without magnetic field and 0.203 mF cm⁻² for Fe₃O₄ with magnetic field. The ECSA of Fe₃O₄ without and with magnetic field are calculated as 5.1 and 5.075 cm²_{ECSA}, respectively.

Fig. S10 The LSV curves of (a) Fe_3O_4 and (b) $CuFe_2O_4$ from Figs. S8 and S9 normalized to the ECSA.

Fig. S11 NH₃ FE and NO₂⁻ FE of CuFe₂O₄ without and with an external magnetic field of 2500 Oe at various applied potentials.

Fig. S12 UV-vis absorption spectra for different concentrations of nitrite-N (a) and the corresponding standard absorbance-nitrite curve (b). NaNO₂ was used as nitrite-N source for standard curve test.

Fig. S13 NH_3 yield rate (a), NH_3 FE (b), and NH_3 partial current (c) of $CuFe_2O_4$ with and without a constant magnetic field of 2500 Oe at various applied potentials during the nitrite reduction reaction.

Fig. S14 CA curves of $CuFe_2O_4$ at -0.9 V vs. RHE during 14 cycles of alternating electrolysis, with and without a constant magnetic field of 2500 Oe.

Fig. S15 HRTEM images of CuFe₂O₄ after NO₃⁻RR.

Fig. S16 FESEM images of $CuFe_2O_4$ after CA at the scale of (a) 1µm, (b) 5µm. EDS mapping of $CuFe_2O_4$ for (c) Cu, Fe, and O, (d) Cu, (e) Fe, and (f) O elements.

Fig. S17 PXRD patterns of $CuFe_2O_4$ spinel oxide loading on carbon paper after NO_3 -RR at ambient conditions.

Fig. S18 Operando Raman spectra of $CuFe_2O_4$ at different potentials from -0.1 V to -1.1 V vs RHE in 0.5 M Na_2SO_4 + 0.1 M $NaNO_3$.

Fig. S19 HRTEM images of $CuFe_2O_4$ before and after NO_3 -RR.

Fig. S21 Cu 2p XPS spectra (a), Fe 2p XPS spectra (b), O 1s XPS spectra (c) and Cu LMM AES spectra (d) of $CuFe_2O_4$ before and after NO_3 -RR.

Fig. S22 The XAS spectrum of Cu L-edge, Fe L-edge, O K-edge of $CuFe_2O_4$ before and after NO_3 -RR.

Fig. S23 The in-situ ATR-FTIR spectra of $CuFe_2O_4$ in the electrolyte of (a) 0.5 M $Na_2SO_4 + 0.1$ M $NaNO_3$ and (b) 0.5 M $Na_2SO_4 + 0.1$ M $NaNO_2$ at various potentials.

Fig. S24 The corresponding structure of $*NO_3$ absorbed on the Fe/Fe site of $CuFe_2O_4$.

Fig. S25 Free energy diagrams of individual intermediates on $CuFe_2O_4$ and the corresponding structure of intermediates during the nitrate reduction reaction.

Fig. S26 Free energy diagrams of individual intermediates on $CuFe_2O_4$ and the corresponding structure of intermediates during the nitrite reduction reaction.

Fig. S27 DOSs for all atoms of intermediates involved in the NO₃⁻RR process, including (a) *NO₃, (b) *NO₂, (c) *NO, (d) *NHO, (e) *NH₂O, (f) *NH₂OH, (g) *NH₂ and (h) *NH₃.

Fig. S28 DOSs of Fe atom on $CuFe_2O_4$ after NO₃, NO₂, NO, NHO, NH₂O, NH₂OH, NH₂ and NH₃ adsorption.

Fig. S29 Magnetic hysteresis loops of $CuFe_2O_4$ at room temperature.

Catalysts	electrolyte	$ m NH_3$ yield rate (mg h ⁻¹ cm ⁻²)	FE _{NH3}	Potential (vs. RHE)	ref
CuFe ₂ O ₄	$0.5M \operatorname{Na_2SO_4} +$ $0.1M \operatorname{NaNO_2}$	5.97	85.5%	-1.1 V	This work
Fe ₃ O ₄	$0.5M \operatorname{Na}_2 \operatorname{SO}_4 +$ $0.1M \operatorname{Na} \operatorname{NO}_3$	5.96	87.6%	-1.1 V	This work
Fe/Cu-NG	1 M KOH + 0.1 M KNO ₃	4.41	~92.51%	-0.3 V	1
Fe single atom	0.1 M K ₂ SO ₄ + 0.5 M KNO ₃	2.05	~75%	-0.66 V	2
Fe-PPy SACs	0.1 M KOH + 0.1 M KNO ₃	2.72	99.69%	-0.3	3
Fe ₂ TiO ₅	PBS solution + 0.1M NaNO ₃	1.24	87.6%	-0.9	4
SA-Fe(II)	0.5 M Na ₂ SO ₄ + 0.1 M PBS+ 0.2 M NaNO ₃	4.93	99.6%	-1.0	5
CuCl/TiO ₂	0.5 M Na ₂ SO ₄ + 100 ppm KNO ₃	2.21	85%	-0.8	6
Cu–PTCDA	0.1 M PBS + 500 ppm KNO ₃	0.44	77%	-0.4	7
Co– Fe@Fe ₂ O ₃	0.1 M Na ₂ SO ₄ + 50 ppm NaNO ₃	1.51	85.2%	-0.75	8
defective CuO	0.05 M H ₂ SO ₄ + 0.05 M KNO ₃	5.61	45%	-0.7	9
Cu49Fe1	0.1 M K ₂ SO ₄ + 200 ppm KNO ₃	3.91	94.5%	-0.74	10

Table S1: Comparison of the NH_3 yield rate defined by the electrode area among various electrodes.

Cu/Cu ₂ O	0.5 M Na ₂ SO ₄ +	4 17	05 80/	0.85	11
	200 ppm NaNO ₃	4.1/	95.870	-0.85	11
TiO _{2-x}	0.5 M Na ₂ SO ₄ +	0.77	950/	0.05	12
	50 ppm NaNO ₃	0.77	8370	-0.95	12
Co/CoO	0.1 M Na ₂ SO ₄ +	2 22	02 80/	0.65	12
NSAs	200 ppm NaNO ₃	5.25	95.870	-0.03	15
Cu single-	0.5 M Na ₂ SO ₄ +	28 72	700/	2.0	14
atom	1000 ppm KNO ₃	20.73	/0/0	-2.0	14
Cu-N-C SAC	0.1 M KOH + 0.1	4.5	84.7%	1.0	15
	M KNO3	4.3		-1.0	13

Magnetic field (Oc)	NH ₃ yield rate	Standard deviation	NO ₂ ⁻ yield rate	Standard deviation	
Magnetic field (Oe)	$(mg h^{-1} cm^{-2})$	Standard deviation	$(mg h^{-1} cm^{-2})$		
0	2817.40	130.68	205.00	31.88	
500	3589.09	254.93	315.19	23.98	
1000	5100.50	165.14	819.14	245.60	
1500	5433.84	49.39	1995.58	338.25	
2000	5703.24	207.45	3536.61	264.59	
2500	6022.88	217.46	4693.60	288.19	

Table S2: Comparison of the NH_3 and NO_2^- yield rate at -1.1 V vs RHE under gradient magnetic field.

Table S3: Comparison of the NH_3 and NO_2^- FE at -1.1 V vs RHE under gradient magnetic field.

Magnetic field (Oe)	NH ₃ FE (%)	Standard deviation	NO ₂ ⁻ FE (%)	Standard deviation
0	61.95	3.41	0.42	0.08
500	72.36	1.40	0.59	0.03
1000	85.28	2.30	1.26	0.35
1500	81.29	1.86	2.76	0.51
2000	84.11	1.42	4.83	0.48
2500	86.12	3.69	6.20	0.46

References

- S. Zhang, J. Wu, M. Zheng, X. Jin, Z. Shen, Z. Li, Y. Wang, Q. Wang, X. Wang, H. Wei, J. Zhang, P. Wang, S. Zhang, L. Yu, L. Dong, Q. Zhu, H. Zhang and J. Lu, *Nat. Commun.* 2023, 14, 3634.
- Z. Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F. Y. Chen, J. Y. (Timothy) Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami and H. Wang, *Nat. Commun.* 2021, 12, 2870.
- 3. P. Li, Z. Jin, Z. Fang and G. Yu, Energy Environ. Sci. 2021, 14, 3522–3531.
- H. Du, H. Guo, K. Wang, X. Du, B. A. Beshiwork, S. Sun, Y. Luo, Q. Liu, T. Li and X. Sun, *Angew. Chem. Int. Ed.* 2023, 62, 202215782.
- C. Liu, G. Zhang, W. Zhang, Z. Gu and G. Zhu, Proc. Natl. Acad. Sci. 2023, 120, e2209979120.
- W. J. Sun, H. Q. Ji, L. X. Li, H. Y. Zhang, Z. K. Wang, J. H. He and J. M. Lu, Angew. Chem. Int. Ed. 2021, 60, 22933.
- G. F. Chen, Y. Yuan, H. Jiang, S. Y. Ren, L. X. Ding, L. Ma, T. Wu, J. Lu and H. Wang, *Nat. Energy* 2020, 5, 605–613.
- S. Zhang, M. Li, J. Li, Q. Song and X. Liu, Proc. Natl. Acad. Sci. 2022, 119, e2115504119.
- R. Daiyan, T. Tran-Phu, P. Kumar, K. Iputera, Z. Tong, J. Leverett, M. H. A. Khan, A. A. Esmailpour, A. Jalili, M. Lim, A. Tricoli, R.-S. Liu, X. Lu, E. Lovell and R. Amal, *Energy Environ. Sci.* 2021, 14, 3588–3598.
- C. Wang, Z. Liu, T. Hu, J. Li, L. Dong, F. Du, C. Li and C. Guo, *ChemSusChem* 2021, 14, 1825–1829.
- Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, *Angew. Chem. Int. Ed.* 2020, 59, 5350–5354.
- R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, ACS Catal. 2020, 10, 3533–3540.
- 13. Y. Yu, C. Wang, Y. Yu, Y. Wang and B. Zhang, Sci. China Chem. 2020, 63,

1469–1476.

- X. F. Cheng, J. H. He, H. Q. Ji, H. Y. Zhang, Q. Cao, W. J. Sun, C. Yan and J. M. Lu, *Adv. Mater.* 2022, 34, 2205767.
- J. Yang, H. Qi, A. Li, X. Liu, X. Yang, S. Zhang, Q. Zhao, Q. Jiang, Y. Su, L. Zhang, J. F. Li, Z. Q. Tian, W. Liu, A. Wang and T. Zhang, *J. Am. Chem. Soc.* 2022, 144, 12062–12071.