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Supplementary Figure 1 The detailed experimental workflow for data generation.
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Supplementary Figure 2 The detailed workflow of the proposed deep generative transfer learning method. Step1: 

Pulse test. Step2: Feature engineering. Step3: VAE network training. Step4: voltage feature data generation. Step5: 

SOC prediction. Step6: Remaining capacity prediction in one domain. Step7: Voltage feature data generation and 

SOC prediction in another domain. Step8: Remaining capacity prediction in another domain via CORAL transfer 

learning.
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Supplementary Table 1 Model performance benchmarking only using target domain data (1/50 = 42 samples for 

Pouch31 and Pouch52, respectively)

MAPE (%) 𝜌
Model

Pouch31 Pouch52 Pouch31 Pouch52

Linear Regression 100.72 62.23 0.19 0.01

Ridge Regression 7.13 15.95 0.17 0.72

SVM 6.64 17.94 0.11 0.55

k-NN 8.23 17.03 0.05 0.34

Random Forest 9.00 16.49 -0.02 0.33

DNN 10.51 10.31 0.07 0.69

Our work 3.6 7.2 0.73 0.84
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Supplementary Table 2 Model performance benchmarking only using target domain data (1/40 = 52 samples for 

Pouch31 and Pouch52, respectively)

MAPE (%) 𝜌
Model

Pouch31 Pouch52 Pouch31 Pouch52

Linear Regression 100.50 66.35 0.19 -0.04

Ridge Regression 6.69 15.85 0.14 0.71

SVM 6.31 17.98 0.10 0.55

k-NN 7.53 17.45 0.10 0.28

Random Forest 7.64 17.22 0.10 0.26

DNN 9.33 11.54 0.34 0.70

Our work 3.7 8.1 0.70 0.82
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Supplementary Table 3 Model performance benchmarking only using target domain data (1/30 = 70 samples for 

Pouch31 and Pouch52, respectively)

MAPE (%) 𝜌
Model

Pouch31 Pouch52 Pouch31 Pouch52

Linear Regression 63.66 67.76 0.08 -0.03

Ridge Regression 6.99 17.47 0.14 0.63

SVM 6.03 18.08 0.17 0.57

k-NN 7.74 17.50 0.05 0.21

Random Forest 7.43 17.20 0.15 0.24

DNN 6.22 11.82 0.51 0.69

Our work 3.7 6.0 0.75 0.88



7

Supplementary Table 4 Model performance benchmarking only using target domain data (1/20 = 105 samples 

for Pouch31 and Pouch52, respectively)

MAPE (%) 𝜌
Model

Pouch31 Pouch52 Pouch31 Pouch52

Linear Regression 48.46 86.03 0.13 0.02

Ridge Regression 7.61 16.96 0.17 0.65

SVM 6.10 17.64 0.19 0.67

k-NN 7.71 17.14 0.01 0.25

Random Forest 8.00 16.26 0.08 0.34

DNN 5.15 9.64 0.64 0.74

Our work 2.8 5.9 0.85 0.89
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Supplementary Table 5 Equivalent circuit model-based parameter identification settings and results.

The BOL testing case The MOL testing case The EOL testing case
--- Selected Inputs ---
Selected SOC value: 25%
Selected SOH column index: 1
Selected SOH value to test: 0.9121
OCV-SOC curve comes from BOL 
SOH: 0.923
--- Optimization Results ---
Best λ0: 0.80268
Best λ1: 2.2408
R1: 0.018114 Ohms
R2: 0.084128 Ohms
C: 286.4023 Farads
Tau: 24.0944 s
Q_true: 1.9154 Ah
Q_nominal: 2.1 Ah
Estimated Q: 2.0099 Ah
MAPE to Q_nominal: 4.29 %
MAPE to Q_true: 4.9337 %

--- Selected Inputs ---
Selected SOC value: 25%
Selected SOH column index: 8
Selected SOH value to test: 0.8785
OCV-SOC curve comes from BOL 
SOH: 0.923
--- Optimization Results ---
Best λ0: 1.204
Best λ1: 2.4749
R1: 0.017815 Ohms
R2: 0.11348 Ohms
C: 262.7274 Farads
Tau: 29.8145 s
Q_true: 1.8448 Ah
Q_nominal: 2.1 Ah
Estimated Q: 2.0653 Ah
MAPE to Q_nominal: 1.6542 %
MAPE to Q_true: 11.9474 %

--- Selected Inputs ---
Selected SOC value: 25%
Selected SOH column index: 65
Selected SOH value to test: 0.6598
OCV-SOC curve comes from BOL 
SOH: 0.923
--- Optimization Results ---
Best λ0: 0.70234
Best λ1: 2.8763
R1: 0.018151 Ohms
R2: 0.070114 Ohms
C: 301.2463 Farads
Tau: 21.1215 s
Q_true: 1.3856 Ah
Q_nominal: 2.1 Ah
Estimated Q: 2.1048 Ah
MAPE to Q_nominal: 0.22842 %
MAPE to Q_true: 51.9073 %
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Supplementary Note 1 Parameter Identification of the Equivalent Circuit Model

1 Model

Consider the equivalent circuit model (ECM) given by the following differential equations:

(1)
�̇�(𝑡) =

1
𝑄
𝐼(𝑡),  𝑧(0) = 𝑧0

(2)
�̇�𝑐(𝑡) =‒

1
𝑅2𝐶

𝑉𝑐(𝑡) +
1
𝐶
𝐼(𝑡),  𝑉𝑐(0) = 𝑉𝑐0

 (3)𝑉(𝑡) = 𝑂𝐶𝑉(𝑧(𝑡)) + 𝑉𝑐(𝑡) + 𝑅1𝐼(𝑡)

where the parameters  are unknown. We seek to identify these parameters from measurements of . To 𝑅1,𝑅2,𝐶,𝑄 𝑉(𝑡),𝐼(𝑡)
achieve this goal, we follow two steps:

1. Formulate a parametric model.

2. Formulate a parameter identification algorithm.

Let’s begin.

2 Parametric Model

Ultimately, we seek to obtain a linear-in-the-parameters model in the form:

(4)𝑧(𝑡) = 𝜃𝑇𝜙(𝑡)

where  is a vector containing the unknown parameters, and scalar signal  and vector signal  are measured or 𝜃 𝑧(𝑡) 𝜙(𝑡)
processed from measurements. To arrive at this linear-in-the-parameters form, we follow these steps:

1. Derive the transfer function from  to 𝐼(𝑡) 𝑉(𝑡)

2. Apply filters to process  and  from measured signals (will be clear later)𝑧(𝑡) 𝜙(𝑡)

Let’s go.

 First, note the model is nonlinear due to the open circuit voltage term: . Let’s approximate this term by it’s first-𝑂𝐶𝑉(𝑧(𝑡))

order Taylor series approximation w.r.t.  around ,𝑧(𝑡) 𝑧(𝑡) = 𝑧0

(5)
𝑂𝐶𝑉(𝑧(𝑡))≈

𝑂𝐶𝑉(𝑧0)
⏟
= 𝛽0

+

𝑑𝑂𝐶𝑉
𝑑𝑧

|𝑧= 𝑧0
⏟
= 𝛽1

(𝑧 ‒ 𝑧0)
⏟

= �̃�(𝑡)
+ 𝐻.𝑂.𝑇

(6)𝑂𝐶𝑉(𝑧(𝑡))≈ 𝛽1�̃�(𝑡) + 𝛽0

where , , . This allows us to re-write the model into proper linear form:�̃�(𝑡) = 𝑧(𝑡) ‒ 𝑧0 𝛽0 = 𝑂𝐶𝑉(𝑧0) 𝛽1 = 𝑂𝐶𝑉
'(𝑧0)

(7)
̇�̃�(𝑡) =‒

1
𝑄
𝐼(𝑡),  �̃�(0) = 0
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(8)
�̇�𝑐(𝑡) =‒

1
𝑅2𝐶

𝑉𝑐(𝑡) +
1
𝐶
𝐼(𝑡),  𝑉𝑐(0) = 𝑉𝑐0= 0

(9)�̃�(𝑡) = 𝛽1�̃�(𝑡) + 𝑉𝑐(𝑡) + 𝑅1𝐼(𝑡)

where . That is, we consider the measured output to be the voltage deviation from the �̃�(𝑡) = 𝑉(𝑡) ‒ 𝛽0 = 𝑉(𝑡) ‒ 𝑂𝐶𝑉(𝑧0)

initial voltage. Note also that I have assumed . This is true when the battery is at initially at equilibrium, but also 𝑉𝑐(0) = 0
convenient because we don’t need to worry about initial conditions when taking the Laplace transform.

We take the Laplace transform next to derive transfer function from  to . A few lines of work results in:𝐼(𝑡) �̃�(𝑡)

(10)

�̃�(𝑠) =

𝑅1𝑄𝑠
2 + (𝑅1𝑄𝑅2𝐶 + 𝑄𝐶 ‒ 𝛽1)𝑠 ‒

𝛽1
𝑅2𝐶

𝑄𝑠2 +
𝑄
𝑅2𝐶

𝑠+ 0
𝐼(𝑠)

Note that I’ve abused notation by indicating the frequency-domain signals ,  by the same capital letters as the time-�̃�(𝑠) 𝐼(𝑠)
domain signals. The meaning should be clear from context. At this stage let’s represent the transfer function by the following 
generalized notation:

(11)
�̃�(𝑠) =

𝑏2𝑠
2 + 𝑏1𝑠+ 𝑏0

𝑎2𝑠
2 + 𝑎1𝑠+ 𝑎0

𝐼(𝑠)

where the coefficients are defined in the table below.

Transfer Function Coefficients

𝑎00

𝑎1
𝑄
𝑅2𝐶
𝑎2𝑄

𝑏0‒
𝛽1
𝑅2𝐶

𝑏1
𝑅1𝑄

𝑅2𝐶
+
𝑄
𝐶
‒ 𝛽1

𝑏2𝑅1𝑄

Now we take the inverse Laplace transform to arrive at a higher-order differential equation model:

(12)𝑎2 ̈�̃�(𝑡) + 𝑎1 ̇�̃�(𝑡) + 𝑎0�̃�(𝑡) = 𝑏2�̈�(𝑡) + 𝑏1�̇�(𝑡) + 𝑏0𝐼(𝑡)

Pause for a moment and observe the equation above. This equation is linear-in-the-parameters, and contains measured signals 
, . The only problem is that it requires derivatives of measured signals. To solve this problem, we filter both sides 𝐼(𝑡) 𝑉(𝑡)

with a second order filter:

(13)
Λ(𝑠) =

𝜆0

𝑠2 + 𝜆1𝑠+ 𝜆0
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with stable poles (verified by setting ). Applying this filter and re-organizing yields:𝜆0,𝜆1 > 0

(14)

{ 𝜆0

𝑠2 + 𝜆1𝑠+ 𝜆0
} ̈�̃�(𝑡)

⏟
= 𝑧(𝑡)

=
[𝑏2𝑎2

𝑏1
𝑎2

𝑏0
𝑎2

𝑎1
𝑎2

𝑎0
𝑎2]

⏟
= 𝜃𝑇

[ �̈�(𝑡)�̇�(𝑡)
𝐼(𝑡)
‒ ̇�̃�(𝑡)
‒ �̃�(𝑡)

] ⋅ { 𝜆0

𝑠2 + 𝜆1𝑠+ 𝜆0
}

⏟
= 𝜙(𝑡)

which yields the linear-in-the-parameters model we seek. However, we need to sort out how to implement the filters. Let us 
focus on implementing

(15)

𝜆0

𝑠2 + 𝜆1𝑠+ 𝜆0
𝑦(𝑡)

where  represents . To illustrate, let’s focus on , i.e.𝑦(𝑡) ̈�̃�(𝑡),�̈�(𝑡),�̇�(𝑡),𝐼(𝑡), ‒ ̇�̃�(𝑡), ‒ �̃�(𝑡) 𝑦(𝑡) = ̈�̃�(𝑡)

(16)
𝑧(𝑡) =

𝜆0𝑠
2

𝑠2 + 𝜆1𝑠+ 𝜆0
�̃�(𝑡)

To implement, we will convert this transfer function into state-space form. Any state-space realization will do. Let’s pick the 
controllable canonical form. The corresponding  matrices are:𝐴,𝐵,𝐶,𝐷

(17)
𝐴= [ 0 1

‒ 𝜆0 ‒ 𝜆1], 𝐵= [01]
(18)𝐶= [ ‒ 𝜆20 ‒ 𝜆1𝜆0], 𝐷= 𝜆0

Following the same approach, we list the state-space matrices for the remaining signals.

(19)
𝜙1(𝑡) =

𝜆0𝑠
2

𝑠2 + 𝜆1𝑠+ 𝜆0
𝐼(𝑡)

(20)
𝐴= [ 0 1

‒ 𝜆0 ‒ 𝜆1], 𝐵= [01]
(21)𝐶= [ ‒ 𝜆20 ‒ 𝜆1𝜆0], 𝐷= 𝜆0

(22)
𝜙2(𝑡) =

𝜆0𝑠

𝑠2 + 𝜆1𝑠+ 𝜆0
𝐼(𝑡)

(23)
𝐴= [ 0 1

‒ 𝜆0 ‒ 𝜆1], 𝐵= [01]
(24)𝐶= [0 𝜆0], 𝐷= 0

(25)
𝜙3(𝑡) =

𝜆0

𝑠2 + 𝜆1𝑠+ 𝜆0
𝐼(𝑡)
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(26)
𝐴= [ 0 1

‒ 𝜆0 ‒ 𝜆1], 𝐵= [01]
(27)𝐶= [𝜆0 0], 𝐷= 0

(28)
𝜙4(𝑡) =

‒ 𝜆0𝑠

𝑠2 + 𝜆1𝑠+ 𝜆0
�̃�(𝑡)

(29)
𝐴= [ 0 1

‒ 𝜆0 ‒ 𝜆1], 𝐵= [01]
(30)𝐶= [0 ‒ 𝜆0], 𝐷= 0

(31)
𝜙5(𝑡) =

‒ 𝜆0

𝑠2 + 𝜆1𝑠+ 𝜆0
�̃�(𝑡)

(32)
𝐴= [ 0 1

‒ 𝜆0 ‒ 𝜆1], 𝐵= [01]
(33)𝐶= [ ‒ 𝜆0 0], 𝐷= 0

Finally, for convenience, we document in the table below the forward and inverse transformations from   (𝑅1,𝑅2,𝐶,𝑄) ↔

.(𝜃1,𝜃2,𝜃3,𝜃4)

Parameter Transformations

(𝑅1,𝑅2,𝐶,𝑄)→(𝜃1,𝜃2,𝜃3,𝜃4)(𝜃1,𝜃2,𝜃3,𝜃4)→(𝑅1,𝑅2,𝐶,𝑄)
𝜃1 = 𝑅1𝑅1 = 𝜃1

𝜃2 =
𝑅1
𝑅2𝐶

+
1
𝐶
‒
𝛽1
𝑄

1
𝑄
=‒

𝜃3
𝛽1𝜃4

𝜃3 =‒
𝛽1
𝑅2𝐶𝑄

1
𝑅2𝐶

= 𝜃4

𝜃4 =‒
1
𝑅2𝐶

1
𝐶
= 𝜃2 +

𝜃3
𝜃4
+ 𝜃1𝜃4

We have completed the most difficult work – formulating the parametric model. Next, we formulate a parameter 
identification algorithm.

3 Parameter Identification Algorithm

In the previous section, we have formulated a parametric model in the form:

(34)𝑧(𝑡) = 𝜃𝑇𝜙(𝑡)

Consider the true parameter vector . Then the model perfectly satisfies𝜃 ⋆
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(35)𝑧(𝑡) = (𝜃 ⋆ )𝑇𝜙(𝑡)

If  is an estimate of , then the quality of the estimation is measured by the residual�̂� 𝜃 ⋆

(36)𝜖= 𝑧 ‒ �̂�𝑇𝜙

Our parameter identification algorithm is based on minimizing  in some sense. Here, we will specifically consider the Least 𝜖
Squares algorithm with normalization. Namely, we seek to minimize the following cost function

(37)
𝐽(�̂�) =

1
2

𝑡

∫
0

[𝑧(𝜏) ‒ �̂�𝑇(𝑡)𝜙(𝜏)]2

𝑚2(𝜏)
𝑑𝜏

The value of  that minimizes this cost function is generated by:�̂�(𝑡)

(38)
̇�̂�(𝑡) = 𝑃(𝑡) ⋅ 𝜖(𝑡) ⋅ 𝜙(𝑡),  �̂�= �̂�0

(39)
�̇�(𝑡) =‒ 𝑃

𝜙𝜙𝑇

𝑚2
𝑃,  𝑃(0) = 𝑃0

(40)𝑚2(𝑡) = 1 + 𝛼𝜙𝑇𝜙,  𝛼> 0, 𝑃0 = 𝑃
𝑇
0 ≻ 0


