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Experiment section

Synthesis of the crystalline and amorphous Na,Zn,(TeO3);: The crystalline
Na,Zny(TeOs); was prepared through a facial solvothermal method. In detail, the
ZnS0O,4-7H,0 and Na,TeO; were dissolved in the deionized water with a molar ratio of
2: 3. Then the solution was transferred to a reactor and heated for 10 h in the oven at
100 °C. Washed the products several times with Ethanol and deionized water, the
Na,Zny(TeOs3); sample was acquired after drying them in the vacuum oven overnight.
The amorphous one was prepared by heating the crystalline Na,Zn,(TeO5); at 180 °C
for 2 h in the Ar atmosphere.

Preparation of Zn anodes: The Zn anodes with crystalline and amorphous
Na,Zny(TeOs); artificial layer were prepared through the doctor blade method.
Specifically, the surface of commercial Zn (purity: 99.999%; thinness: 50 pm) were
sanded using sandpapers with a grit size of 1,000 to eliminate the oxide layer and then
cleaned by the ethanol. The crystalline and amorphous Na,Zn,(TeOs); powders (90
wt%), polyvinylidene difluoride (10 wt%), and the N-Methyl-2-pyrrolidone were
mixed to acquire the slurries. Subsequently, the acquired slurries were coated on the
clean Zn foils and noted as CNZT@Zn and ANZT@Zn, respectively, and the
commercial Zn foil is named bare Zn.

preparation of MnO,, NH,V,0,y, and iodine cathodes: The MnO, was synthesized
through a solvothermal method based on previous literature.l'l In detail, MnSO4-H,0O
(0.4566 g) and H,SO4 (1.5 mL, 1 M) were dissolved in 70 mL of deionized water. The
KMnO, (15 mL, 0.2 M) solution was added to the above solution. Then, the solution
was transferred into an oven and heated at 200 °C for 20 h. After cooling to room
temperature, the product was washed with deionized water several times and dried at
60 °C for 18 h. The NH4V40,¢ was also prepared using the hydrothermal method.!?]
Dissolving 3 mmol NH4VO; into 40 ml deionized water, and then add 4.8 mmol
H,C,04:2H,0. Subsequently, the above solution was transferred into a 50 mL Teflon-
lined stainless autoclave and hearted at 160 °C for 6 h. After cooling naturally to room

temperature, the product was washed with distilled water several times and dried at 80



°C for 10 h. The mixture of active carbon and iodine powder (in a mass ratio of 1: 1)
was mixed in a sealed Teflon-liner and then heated at 100 °C for 6 h to acquire the
cathode material. The MnO,/NH4V,40;¢/iodine cathodes were prepared by mixing
cathode material (70 wt%), conductive acetylene black (20 wt%), and polyvinylidene
fluoride (10 wt%). The mixture was coated on carbon paper, dried in the oven at 60 °C
for 10 h and then cut into circular electrode slices.

Simulation Method: All the first-principles calculations were performed with the
VASP package, and the projector augmented wave (PAW) method was adopted to
incorporate core electrons into pseudopotentials. Moreover, the exchange-correlation
functional parametrized by Perdew-Burke-Ernzerhof (PBE) was employed. The
electronic Brillouin zone and plane-wave cutoff energy were set at 500 eV. The Gamma
scheme k-mesh of 2 x 4 x 1 was utilized for the convergence of total energy with a
criterion of 1 x 107 eV per atom, and the residual force on each atom was 3 less than
0.03 eV A!. To model O site and Te site of Na,Zn,(TeO3); crystal and the Zn (002)
facet with Zn atom adsorbed, a 15 A vacuum was added into the z-direction. The
binding energy Ej, could be calculated through Ey, = Ei — Egap — Ezn, Where the Eyy,
Egap, and Ez, represented the total energy of O site and Te site of Na,Zn,(TeO;); crystal
and the Zn (002) facet with Zn atom, the energy without Zn atom, and the energy of the
Zn atom, respectively.

The MD simulation is performed using CP2k software. As a starting point, the unit
cell structure of crystalline Na,Zn,(TeOs3); was replicated into a 1 X 1x 3 supercell (202
atoms, the hydrogen atoms are omitted) for better statistical averaging of structures.
Initially, structure optimization for the constructed supercell was performed to acquire
the structure model of amorphous Na,Zn,(TeO;);. The structure model was then heated
to 453 K at a rate of 86.6 K ps~! and kept for 5 ps. Afterwards, the structure was cooled

to 300 K at a rate of 86.6 K ps~! before equilibration for another 5 ps.

Materials characterization

X-ray diffraction (XRD, Bruker D2 Phase) measurements of the powders samples

and electrodes were performed with Cu Ka (A=1.5406 A). The scanning electron



microscopy (SEM, Dualbeam Helios 5CX) measurements were used to acquire the Zn
deposition morphology on those Zn anodes. Besides, the 2 m ZnSO, electrolyte was
used to measure the static contact angle on different anodes (JY-82B Kruss DSA). The
Inductively Coupled Plasma (ICP) measurement is conducted with ICP-OES: Agilent
5110 (U.S.A), and the final result is the average of the three measurement values. The
in-situ  Raman spectroscopy measurements were conducted via In-Via Raman
microscopic with an Ar* laser (4 = 600 nm) at 50 x aperture. The X-ray photoelectron
spectroscopy (XPS) measurements were carried out with a Thermo Scientific K-Alpha.
Transmission electron microscopy (TEM) images were acquired using an image

aberration-corrected FEI Titan microscope at 300 kV.

Fabrication of Batteries and Electrochemical Measurement

The electrochemical performance of the bare Zn, CNZT@Zn, and ANZT@Zn
anodes was evaluated by assembling the coin-type cell CR2025. For the symmetric cell,
the Zn anode was cut into round pieces, and the electrolyte was composed of 2 M ZnSO,
aqueous solution. For the Zn||Cu half cells, bare Cu, CNZT@Cu, and ANZT@Cu were
used as the working electrode and Zn foil was used as the counter electrode. The full
cell was assembled by one of the three Zn anodes and MnO, cathode (with 2 M ZnSO,
+ 0.2 M MnSO, electrolyte), or NH,V 40, cathode (with 2 M Zn(CF;S0;); electrolyte),
or iodine cathode (with 2 m ZnSO, electrolyte). The galvanostatic charge/discharge
tests of cells were carried out on a Land instrument. The cyclic voltammetry curves
over the range of 1.0—1.85 V for full cells (—0.2 to 0.8 V for half cells) and the EIS test
in a frequency range of 1072 to 10° Hz were recorded with the CHI760 electrochemical
workstation. The Tafel plot for symmetric cells was tested in a voltage range from —200
to 200 mV (vs. Zn/Zn?") at a scan rate of 1 mV s™!. The Zn||C coin type cells were used
to record the LSV curves with a scan rate of 10 mV s!. The Chronoamperometry (CA)
measurement was conducted on symmetric cells by applying a constant overpotential
of =150 mV for 250 s. Besides, the Zn coulombic efficiency was measured in Zn||Cu
half-cells. in detail, a fixed amount of Zn (0.5 mAh cm™?) was plated on the Cu electrode

and then stripped back until the cutoff voltage arrived at 0.6 V.
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Fig. S1 (a) FTIR spectra of CNZT and ANZT powders. (b) XPS survey spectra of CNZT and ANZT
powders. (c) High-resolution XPS spectra of O 1s of CNZT and ANZT powders.
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Fig. S2 (a,c) The N, adsorption/desorption isothermal curves and (b,d) pore size distribution of
CNZT and ANZT powders.



Fig. S3 The SEM images of CNZT and ANZT powders with corresponding EDS mapping results.



Fig. S4 The side-view SEM images of CNZT@Zn and ANZT@Zn anodes, the thickness of prepared
interlayers is marked.
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Fig. S5 The calculated hardnesses of CNZT and ANZT interlayers that based on the nanoindentation
measurements (the indentation depth is fixed at 500 nm). (b-g) The test force vs. indentation depth
curves of nanoindentation measurement on the CNZT and ANZT interlayers.
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Fig. S6 (a,b) The structure model of ANZT (after MD simulation) and CNZT samples. (c) The
schematic diagram of the formation of Zn,(TeO3)?~ anion channel during the Zn deposition process.
(d) High-resolution Na 1s XPS spectra of CNZT and ANZT interlayers before and after 20 cycles
at 5 mA cm™%/5 mAh cm™. (e-g) Temperature-varied (10 °C, 20 °C, 30 °C, 40 °C, and 50 °C)
Nyquist plots of symmetric cells with bare Zn, CNZT@Zn, and ANZT@Zn anodes.
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Fig. S7 (a) 2Na NMR spectrum of cycled CNZT interlayer (after 1 cycle at 5 mA cm™2/2.5 mAh
cm2). (b) CA curves of bare Zn, CNZT@Zn, and ANZT@Zn anodes under an overpotential of =25
mV. The Nyquist plots of symmetric cells with (c) bare Zn, (d) CNZT@Zn, and (¢) ANZT@Zn
anodes. (f) The calculated ion transference number of bare Zn, CNZT@Zn, and ANZT@Zn anodes.
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Fig. S8 (a) CV curves of Zn||Cu half-cells with bare Cu, CNZT@Cu, and ANZT@Cu electrodes.
(b) Rate performance of symmetric cells with bare Zn, CNZT@Zn, and ANZT@Zn anodes.
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Fig. S9 (a) Charge/discharge curves of Zn||[CNZT@Cu half-cell at different cycle numbers (1 mA
cm~2/1 mAh cm™). (b) Tafel and (c) LSV curves of bare Zn, CNZT@Zn, and ANZT@Zn anodes.
(d) The CE test of Zn||Cu half-cells with bare Cu and ANZT@Cu electrodes at 5 mA ¢cm™2/2 mAh
cm2, (e) Cycling performance of the Zn||Zn cell at 9 mA cm /4.5 mAh cm™2 (10 pm Zn foil with
a DOD of 68%, which is close to the practical application), the prolonged lifespan verifies its
excellent performances in protecting Zn anodes.
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Fig. S11 The side-view SEM images of (a) bare Zn and (b) ANZT@Zn anodes after cycled in
symmetric cells for 50 cycles (5 mAh cm™2/2.5 mAh cm™). (¢) Chronoamperometry result of
symmetric cells with bare Zn and ANZT@Zn anodes under a constant overpotential of =100 mV.
(d) Calculated adsorption energy of Zn(101), Zn(002), and Zn(100) planes toward the TeOs>~ group.
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Fig. S12 Nyquist plots of symmetric cells with different Zn anodes after different cycles (at 5 mA
cm™2/2.5 mAh cm™).
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50 cycles at 5 mA cm™%/2.5 mAh cm™2 with corresponding EDS mapping results.
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Table S1. The ICP measured Na, Zn, and Te elements contents in the CNZT and ANZT samples.

Sample Constant Content of  Average content  Content of
Sample Element mass volume element of element element
(2) (mL) (mgkg) (mgkg™) (%)
833.236
CNZT Na 0.05 25 827.09 830.79 0.08%
832.045
828.372
ANZT Na 0.05 25 832.052 830.721 0.08%
831.738
292566.319
CNZT Zn 0.05 25 292914.433 292280.521 29.25%
29136081
292697.285
ANZT Zn 0.05 25 295233.412 293118.289 29.31%
291424.169
520336.056
CNZT Te 0.05 25 521268.991 519343.21 51.93%
516424.583
518594.968
ANZT Te 0.05 25 517199.311 518545.217 51.85%

519841.372




Table S2. Performance comparison of dendrite-free Zn anode strategies between this work and

other reported studies.

Areal Areal
Lifespan
Materials Current Capacity Ref.
(h)
(mA cm™2) (mAh cm™)
1 1 2760
ANZT This work
20 5 800
PVDF@Sn 5 55 500 [3]
1 0.5 2500
SALs (4]
1 1 1200
1 1 1250
Zn(OR), [5]
10 5 450
Ni@NiO@Ag 10 1 250 [6]
Zn(002) 22 2 520 [7]
CIL 5 2 720 [8]
1 1 1100
CCI [9]
10 1 880

ESM 5 5 450 [10]




Table S3. Performance comparison of high cathode loading pouch cells between this work and other

reported studies.

Mass loading Cycle number and
Cathode materials Current density Ref.
(mg cm™2) capacity retention
I,/C 9.75 1Ag! 600, 92.7% This work
L/C 6.20 1C 100, 68% [11]
VO, 5.84 lAg! 330, 60% [12]
LiMn,0, 7.20 1C 500, 62% [13]
L/C 2.10 2Ag! 350, 80% [14]
L/C 7.35 2Ag! 100, 64% [15]
L/C 16.40 lAg! 200, 72% [16]
NaV;0q 10.00 05A¢g! 300, 84.7% [17]

LiMn,0, 3.00 1C 300, 84% [18]
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