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Experimental Procedures

Chemicals and Materials

Potassium carbonate (K,COs, 99%), Manganese (lll) oxide (Mn20s, 99%), and Iron (lIl)
oxide (Fe;03, 99%) were obtained from Sigma-Aldrich. Anhydrous (Na;S04) were purchased
from Beijing Tong Guang Fine Chemicals Company. All reagents were used as received without
further purification. And all solutions were prepared using ultrapure water (resistance = 18.2

MQ cm).

Preparation of Electrode

A series of Fe-doped K«MnyO, spinel materials (denoted as KiFeyMni,0,,
where y represents the molar ratio of Fe to Mn; y =0, 0.09, 0.15, 0.22) were synthesized via
a conventional solid-state reaction. Stoichiometric amounts of K;COs, Mn»0s3, and Fe;03
precursors were thoroughly ground in an agate mortar with excess K,COs3 to ensure
homogeneous mixing. The resulting mixtures were subsequently calcined in a muffle furnace
under ambient air at 900°C for 24 h, with a controlled heating rate of 2°C min™'. After natural
cooling to room temperature, the final products were collected and stored in an argon-filled

glove box to prevent moisture absorption and oxidative degradation.

Characterization

Microstructures were studied using scanning electron microscopy (SEM, FEI Quanta 200)
at 20 kV, transmission electron microscopy (TEM; FEI Tecnai G220). Scanning transmission
electron microscopy (STEM) images were acquired using a FEI Talos F200X and a JEOL JEM-
ARMZ200F, both operated at 200 kV. The elemental analyses of the samples were performed
by EDS mapping. The crystallographic phases of samples were determined by a Rigaku D/max
2500 X-ray powder diffractometer with Cu Ka-radiation (A = 0.15405 nm). The electronic
structure and compositional information on the samples were investigated by X-ray

photoelectron spectroscopy (XPS, ESCALAB 250). Raman spectra of the sample (one spectrum



per 30 s) were captured while a cyclic voltammetry test was at a scan rate of 2 mV s
simultaneously. Soft X-ray absorption spectroscopy (sXAS) is performed at room temperature
and at the L3 edges of Mn, Fe, and O K edge in the energy ranges from 630 to 665 eV, 700 to
735 eV and 525 to 550 eV, respectively, at the SINS beamline of the Singapore Synchrotron
Light Source. The incident angles (8), relative to the surface normal, are chosen at 6 = 50°. All
spectra are collected in total-electron-yield (TEY) detection mode with a photon energy
resolution of 0.5 eV, and the degree of the circular polarization is 88%. The probing depth is
expected to be <10 nm. For the in-situ XRD characterization, we used a beryllium-window-
equipped in-situ cell holder to record real-time data of the half-cell. Each scan was conducted
over a 10°-80° range with a step size of 0.02° and a scanning speed of 0.04°/s. The in-situ cell
was continuously charged and discharged without any interval between scans. Additionally,
no smoothing procedures were applied to the data to preserve the integrity of the original

measurements.

Electrochemical Measurements

The working electrode was prepared by the traditional slurry-coating method. 80 wt%
active material, 10 wt% acetylene black, and 10 wt% polytetrafluoroethylene (PTFE) was
mixed and coated onto carbon cloth with an area of 1 cm?. The electrode was then heated at
60 °C for 2 hours to evaporate the solvent and used as the working electrode. Electrochemical
measurements were conducted in a general three-electrode configuration in 1.0 M Na;SO4
aqueous electrolyte with Ag/AgCl and a Pt foil as reference electrode and counter electrode,

respectively.

Mechanical Flexibility of Electrodes

Although this study mainly focuses on tuning the electronic structure of KxFe,Mn1.,0; to
enhance electrochemical performance, we acknowledge that mechanical adaptability is also
important for practical applications. In our work, the spinel powders were directly coated
onto flexible carbon cloth, resulting in electrodes with overall good mechanical compliance.
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While the active material itself was not specifically designed for flexibility, the electrode
architecture benefits from the inherent flexibility of the substrate. We recognize that
evaluating the intrinsic mechanical properties of the spinel phase (e.g., bending durability or
stress-strain behavior) is valuable for future studies aimed at flexible or wearable energy

storage devices.

EIS analysis at different temperatures

According to the relationship, the charge transfer resistance (Rc) follows based on a

thermally activated process. The Arrhenius equation is applied for calculation Equation (S1).
1/Rct = Agexp(—E,/RT)

where Ao, Ea, T, and R represent a constant, the activation energy, temperature in Kelvin, and

gas constant, respectively.

Kinetic calculation

Capacitance contribution can be qualitatively analysed according to the CV curve, as
shown below in Equation (S2)*:

i =av
where i and v are the current density and the potential scan rate, respectively, a is a constant
and b is a tuneable parameter with a value of 0.5-1.0. When the value of b is close to 1.0, the
reaction process is dominated by surface capacitance; when the value of b is close to 0.5, the
reaction process is dominated by diffusion control.

The contribution of capacitance and diffusion limit to the total capacitance is further
quantified.
i(V) = kv + kyv'/?

where ki and k, represent capacitive and diffusion contributions, respectively.

The charge storage mechanism of K\Fe;Mn;.,0;



K«FeyMn1,0, can store charge by fast and reversible redox reaction on the
electrode/electrolyte interface in neutral Na,;SO4 electrolyte during charge and discharge
process according to Equation (S3)%:

K.Fe,Mn,_,0,+ Na* + e~ & K,Fe,Mn,_,00Na

During the cycling process, the redox activity of KFe,Mn1,0; is primarily attributed to
the Mn element. In the discharging process, Mn is reduced from a higher oxidation state to a
lower one, accompanied by the generation of KFe;Mn1,O0Na. In the charging process, Mn
is oxidized from a lower oxidation state to a higher one, along with the transformation of

KxFeyM n1.yOO Na |nt0 KxFeyM nl»yOZ.

Supercapacitor device measurements

An asymmetric supercapacitor (ASC) device was fabricated by employing K«Fe,Mn1.,0;,
and AC as anode and cathode, respectively. Two electrodes were separated by a glassy fibrous
separator in 1 M NaySOs aqueous electrolyte. Cyclic voltammetry (CV) and galvanostatic
charge/discharge (GCD) measurements were performed in a potential window of 0 to 2.4 V.

The corresponding calculation formula (S4) is as follows® #:

Area
(VZ - Vl) XmXyv

C=

The energy density (E, Wh kg?) of the ASC is calculated according to Equation (S5):

_Cx (V, — V;)? y 1000
B 2 3600
where Area, Vi-V2, m and v are the mathematical integration area under the CV curve, voltage

E

window (V), mass (g) and scan rate (V/s), respectively.

DFT Methods

All spin polarization calculations were performed using the Vienna Ab Initio simulation
package (VASP)°. The electron-ion interaction was described with the projector augmented
wave (PAW) method. The electron exchange and correlation energies were treated within the

generalized gradient approximation in the Perdew-Burke-Ernzerh of formalism (GGA-PBE)®.
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In order to more accurately describe the d orbitals of transition metals, the GGA+U method
was used. The effective U values given to Fe and Mn ions were 5.3 eV, and 4.0 eV, respectively.
The computational process also encompassed magnetic calculations, with Mn and Fe values
set at 2 each. In structural optimization, the plane wave cutoff energy is considered to be 500
eV. The convergence accuracy of the iterative process (SCF) is 10°. The strongest convergence
exponent acting on an atom is 0.001 eV atom. When selecting K points for calculation, we
choose a 6x6x6 inverted space grid for calculation and the thickness of the vacuum layer is
set to about 15 angstroms. While the KMO crystal consists of 27 Mn, 52 O, and 8 K atoms; the
KF0.0sMo.910 is composed of 25 Mn, 2 Fe, 52 O, and 8 K atoms; KFp.15Mo 850 is composed of 23
Mn, 4 Fe, 52 O, and 8 K atoms; KFo.22Mo.730 is composed of 21 Mn, 6 Fe, 52 O, and 8 K atoms;
Every atom in these models underwent relaxation. To determine the energy barrier for Na*
migration, a CINEB calculation was executed. To study Na* diffusion and to preclude
electrostatic repulsion among distinct Na ions, two models were devised, each containing a
singular Na atom. During the CINEB procedure, all atoms were permitted to relax within the

set lattice parameters.
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Figure S8. SEM images of (a) KMO, (b) KFo.1sMo.8502, (c) KFo.22M0.7302 powder.
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Figure S9. TEM images of (a) KMO and (b) KFo.15sMo.85s0 powder.
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Figure $S10. HR-TEM images of (a) KMO and (b) KFo.15M0o.gs0 powder.
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Figure S11. EDS mapping of KFp.15Mo.s50 powder.
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Figure S23. In situ Raman spectra of (a) KMO and (b) KFMO electrode during the first

charge/discharge cycle.
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Figure S25. The cross-sectional SEM image of (a) KFo.15sMo.850 and (b) KMO after 200 cycles.

The cross-sectional sample was prepared via the technology of focused ion beam (FIB).
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Figure S26. Local magnified SEM cross-sectional image of (a) KFo.15Mo.ss0 and (b) KMO after
200 cycles. The cross-sectional sample was prepared via the technology of focused ion beam

(FIB).
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Figure S27. EDS elemental mapping of the KFMO electrode after 200 electrochemical cycles.
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Figure $28. Comparative analysis: KFo.15sMo.s50 cathode versus previous studies’-°.
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Figure $29. Schematic illustration of ASC based on KFo.15M 850 cathode and AC anode.
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Figure S30. CV profiles of KFo.15M0.850 and ACin 1.0 M Na;SOa.
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Figure S31. (a) CV profiles at varied potential ranges at 100 mV s* . (b) CV curves

KFo.15Mo.850 //AC ASC at various scan rates.
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previously reported results.16-20
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Table S1. Element contents of the samples obtained from element analysis Wt.%.

Sample K element O element Mn element Fe element
content Wt.% content Wt.%  content Wt.% content Wt.%
KMO 11.39 42.04 46.57 0
KF0.09Mo.910 11.49 58.31 27.28 2.92
KFo.15Mo.850 11.16 43.35 38.47 7.02
KFo0.22Mo.780 11.41 44.83 33.89 9.87
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Table S2. The d-electrons states proportion in KxFe,Mn1.,0, obtained from DOS.

tZg eg
Mn
dxy dyz dXZ dZ2 dxz'yz
DOS
KMO 20.51 19.75 19.72 19.82 20.20
results
KFo.0sMo910 20.07 20.04 20.21 19.78 19.90
KFo.1sMpgsO  20.15 20.11 20.15 19.59 20.01
KFo.22Mp780  20.26 20.20 19.96 19.39 20.18
Fe 2 S
dxy dyz dxz dz2 dxz—y2
DOS
KFo.0sMo910 19.18 20.14 19.62 21.75 19.30
results
KFo.1sMogsO  19.74 21.38 18.66 19.30 20.93
KFo.22Mo780 21.46 19.45 21.70 17.02 20.38
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Table S3. -COHP analysis of KMO, KFo.15M0.850 and KFo 22Mo.780.

Atoms in KMO -COHP Atoms in -COHP Atoms in -COHP
(eF) KFO_15|V|0_350 (eF) KFo_zzMonO (eF)

Mn67-04 0.392 Mn72-04 1.102 Mn71-04 1.305
Mn67-06 0.932 Mn72-06 1.247 Mn71-06 1.589
Mn67-08 1.079 Mn72-08 1.122 Mn71-08 1.436
Mn67-014 1.162 Mn72-014 1.126 Mn71-014 1.504
Mn67-016 1.048 Mn72-016 1.124 Mn71-016 1.380
Mn67-017 0.407 Mn72-017 1.174 Mn71-017 1.447
average 0.837 average 1.149 average 1.444
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Table S4. Fitting results of KMO and KFo.15sMo.850 samples obtained from the EIS curves.

Re Cai(double- Ret(charge  Zw(Warburg
(combined layer transfer resistance)
resistance) capacitance) resistance)

KMO 5.20 0.81 4.60 2.61

KFo.15sMo.8s0 5.87 0.66 0.73 1.28
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