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Experimental section

Preparation of dry Si/G electrode

The dry-processed anode was fabricated by blending a silicon—carbon (Si/C, Hansol Chemical)
composite with artificial graphite (G49, Shanshan) in a 9:91 weight ratio. Carbon black (Super-
P, Imerys) was used as the conductive agent and PTFE (F-106, DAIKIN Industries) as the
binder. The Si/C composite, carbon black, and PTFE were premixed at a 96:1:3 weight ratio
using a planetary mixer (ARE-310, THINKY) to ensure uniform dispersion of the components.
The resulting mixture was manually kneaded with a mortar and pestle under shear force until
a cohesive sheet formed. This sheet was rolled to a target thickness of ~85 pum using a roll-to-
roll calendar to produce freestanding electrode sheets. These sheets were laminated onto SBR-
pretreated copper current collectors to fabricate ThA. By contrast, PrL-ThA was laminated onto
a Li/Cu foil (6.5 um Li laminated on a 10 um Cu substrate, MTI Korea, BR0182). The electrode

density was controlled at 2.1 g cm™ for both configurations, with an electrode area of 1.13 cm?.

Cell assembly

Coin-type (CR2032, Wellcos Corporation) cells were assembled in a dry room with a dew point
below —80 °C using a 19 mm polyethylene separator. For half-cell measurements, the
electrolyte (Enchem) consisted of 1.15 M LiPFg in a 2:4:4 (by volume) mixture of ethylene
carbonate, ethyl methyl carbonate, and diethyl carbonate, supplemented with 1 wt% vinylene
carbonate and 10 wt% fluoroethylene carbonate (FEC). Lithium metal foil (thickness 1.0 T)
was used as the counter electrode to assess the electrochemical performance of each dry-
processed anode. For full-cell tests, S1/G anodes were paired with NCM811 and LFP. NCMS811
cathodes were prepared with a weight ratio of NCM811: carbon black: binder = 90:5:5, while
LFP cathodes were prepared with a weight ratio of LFP: carbon black: binder = 94.5:2.5:3. The
full-cell electrolyte was identical to that used in the half cells, with an additional 1 wt% lithium
difluorophosphate (LiPO,F;) for enhanced stability. All full cells were assembled with an N/P
capacity ratio of 1.1 (capacity-based ratio), with the anodes punched to 14 mm in diameter and

the cathodes to 12 mm.

Electrochemical measurement

The electrochemical performance of coin-type half cells was evaluated using galvanostatic

charge—discharge cycling on a battery cycler (MIHW-200-160CH-B, NEWARE) under a
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constant current—constant voltage protocol. The cells were first subjected to two formation
cycles at 0.1 and 0.2 C, followed by cycling at 0.3 C within a voltage range of 0.01-1.5 V (vs.
Li/Li"). CV was conducted at a scan rate of 0.1 mV s™! in the same voltage window using a
potentiostat (VSP, Biologic). EIS was performed using the same instrument over a frequency
range of 250 kHz to 10 mHz with an amplitude of 5 mV (VSP, Biologic, Seyssinet-Pariset).
For full-cell testing, Si/G anodes paired with NCMS811 cathodes were cycled after two
formation steps at 0.05 and 0.1 C, followed by evaluation at 0.2 C within a voltage range of
2.8-4.25 V. Full cells using LFP cathodes were cycled in a voltage window of 2.5-4.0 V under
the same formation and cycling conditions. The raw impedance spectra obtained during
charging were subsequently analyzed using a DRT framework. DRT analysis was performed
with a MATLAB toolbox, which mathematically transforms the frequency-dependent
impedance data into relaxation-time distributions, enabling the deconvolution and assignment
of individual electrochemical processes. All electrochemical measurements were conducted at

room temperature.

Characterization

The cross-section of the three-layer electrode was examined using a field-emission scanning
electron microscope (FE-SEM; SU8220, Hitachi). Adhesion strength between the electrode
and current collector was evaluated using a universal testing machine (Autograph AGS-X,
SHIMADZU). XRD (D8 ADVANCE, Bruker) measurements were performed over a 20 range
of 10°-90° with a total scan time of 50 min. The NCM811 sample was prepared using a
focused ion beam (SCIOS, FEI) to obtain electron-transparent cross-sectional lamellae. High-
resolution structural analysis was further conducted using aberration-corrected TEM. TOF-
SIMS (TOF-SIMS 5, ION TOF) data were collected using a pulsed Bi** ion at 25 keV, and in-
depth XPS (K-alpha, ThermoFisher) was performed with a 2 keV Al Ka X-ray source.

Computational method

Molecular Dynamics simulations were used to investigate interfacial interactions between the
PTFE binder and anode components using BIOVIA Materials Studio 2025 (Accelrys Inc.).
Composite structures were generated through packing calculations, followed by geometry
optimization using the Condensed-phase Optimized Molecular Potentials for Atomistic
Simulation Studies force field with fine convergence tolerance'. All structures underwent a 50

ps pre-cell relaxation stage under the NPT (isothermal—isobaric) ensemble. Temperature and
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pressure were maintained at room conditions (25 °C and 1 bar) using the Nose-Hoover—
Langevin thermostat and Berendsen barostat, respectively. Simulation employed a time step of
1 fs and cut-off radius of 1.85 nm for Van der Waals interactions. Long-range electrostatic
interactions were calculated using the Ewald summation method?. PTFE and SBR chains were
constructed with five monomer repeat units each®. Atomic charges were derived from density
functional theory calculations using the DMol3 module. Convergence tolerance was set at
0.002 Ha A! for maximum force, 1.0 x 10-5 Ha for energy, and < 1.0 x 10 Ha for self-
consistent field tolerance, using a numerical basis set based on double numerical plus
polarization. The lithium adhesion energy was calculated using the following equation: £, gesion
enerey = Evorat = Esubsirate — Eadsorpare Hete, Evupsirare ad Eogsorpare demote the energy of PTFE and

the adsorbate, SBR or Li metal, respectively.

FEM-based theoretical analysis
Finite element analysis was performed to investigate the prelithiation behavior of SiC

composite electrodes under both direct contact and electrochemical conditions. Simulations
were performed using the Doyle-Fuller-Newman (DFN) model within COMSOL
Multiphysics (version 6.2). A 3D microstructure representing the SiC composite electrode was
constructed by sequentially stacking silicon and carbon particles within a 50 pm thick domain.

Geometric generation was conducted using Blender 4.3, a commercial 3D modeling software,

and imported into COSMOL as the computational mesh*>.

The current density vector s, which describes the flow of electrons through the cross-sectional

area of the solid electrode, is proportional to the gradient of the electric potential V¢S, and is

characterized by Ohm’s law:
.= -0 Vo, #(1)

where s and s represent the intrinsic electrical conductivity of the electrode material and
the electric potential at the solid electrode region, respectively. The transport behavior of the
charged lithium species in the liquid electrolyte was calculated based on a modified form of
Ohm’s law, which accounts for both electric potential and concentration gradients, as follows:
ZGIZJ'RT(1 N dlnf

= -oV¢,+ )(1 -t )Vinc,#(2)

dlnc;
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where 1, ¢l, F R f €l and £y represent the ionic conductivity of liquid electrolyte, potential
at the liquid electrolyte region, Faraday constant, universal gas constant, molar activity
coefficient, concentration of liquid electrolyte, and transport number of the liquid electrolyte,
respectively. The time-dependent Li-ion mass transportation, which accounts for both
concentration-driven diffusion and migration under the influence of ionic current in liquid

electrolyte, is described by Fick’s second law of diffusion:
ac, it
i V- (DVc) - T'#(S)
where b, represents the diffusion coefficient of Li ions in the liquid electrolyte region.
The time-dependent Li-ion mass transportation, both across adjacent active material particles
via direct contact and within individual particles, is described by Fick’s second law of

diffusion, as follows:
ac,
50~ U (u(Ve))

“4)

Ds and s represent the diffusion coefficient and concentration of Li-ion in the active

where
material, respectively®’. Local current density i, representing the interfacial electrochemical
kinetics driven by the potential difference between the electrolyte and the active material, was

calculated using the generalized Butler—Volmer equation, as follows:

i= io(exp (%) - exp (%T)),#(S)

where @, 7, and ‘0 represent cathodic charge exchange coefficient of active materials,

overpotential, and exchange current density?®.
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Supplementary Note 1

The prelithiation amount was carefully designed to match the first-cycle irreversible lithium
loss of the anode. Excessive prelithiation beyond this compensation can cause undesired
lithium metal plating, dead lithium formation, or unstable SEI growth, thereby compromising
the long-term cycling stability and safety of the cell.!> Accordingly, the measured first-cycle
irreversible capacity loss of the anode was 68.9 mAh g~! with an areal mass loading of 13.7
mg cm™2, corresponding to an areal capacity of 0.943 mAh cm™. Based on this value, the
lithium thickness was selected as 6.5 um, corresponding to 1.34 mAh cm™ areal capacity,

calculated using the following equation:
Qui=pp Xh XCy,

where pr; (= 0.534 g cm™) is the density of lithium, Cy, (= 3860 mAh g™!) is the theoretical
capacity of lithium, and 4 is the lithium thickness (cm).3* This amount was sufficient to fully
compensate the irreversible capacity loss while minimizing the risks associated with excessive

prelithiation.
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Supplementary Note 2

The energy density in a full cell is calculated as follows:

Energy Density at the Electrode Level (Wh Kg ™ 1)
= Gravimetric Capacity X Nominal Voltage X Active Material Ratio
Mass Lading (cathode)

X .
Mass Loading (Cathode + Anode)

The detailed electrode information for both the cathode and anode is provided in Table S2.
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Fig. S1 Cross-sectional SEM image of the ThA.
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Fig. S3 TOF-SIMS profiles of a, front and b, back of pristine ThA and corresponding 3D

reconstruction images without electrolyte exposure.
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Fig. S4 a, C Is, b, O 1s, and ¢, F 1s XPS profiles of the front and back surfaces of the pristine

ThA.
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Fig. S5 a, C 1s, b, O 1s, and ¢, F 1s XPS profiles of the front and back surfaces of ThA

immersed for 24 h.
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Fig. S6 XRD patterns of pristine electrodes without contact with electrolytes.
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Fig. S7 TOF-SIMS profiles of a, front and b, back of pristine PrL-ThA and corresponding 3D

reconstruction images.
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Fig. S8 a, C 1s, b, O 1s, and ¢, F 1s XPS profiles of the front and back surfaces of pristine PrL-

ThA.
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Fig. S9 a, C 1s, b, O 1s, and ¢, F 1s XPS profiles of the front and back surfaces of PrL—ThA-

immersed for 24 h.
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Fig. S10 PrL-ThA electrode under liquid electrolyte conditions. a, overpotential distribution

and b, electrolyte potential distribution with SOC of the active materials.
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Fig. S11 Equivalent circuits of EIS measurement of a, before and b, after formation shown in

Fig. 4c and d, respectively.
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Fig. S12 Comparison of Rgg; and R after formation of ThA and PrL-ThA. PrL-ThA results in

lower Rggy and R values compared with that of the untreated ThA after formation.
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Fig. S13 XPS analysis results of the electrodes after formation. In-depth F 1s XPS spectra and
atomic ratio profiles of the front of a, ¢, ThA and b, d, PrL-ThA.
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ThA (left) and PrL-ThA (right) and corresponding 3D reconstruction images.
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Fig. S15 Cross-sectional images of Si particles in anodes after 20 cycles at 0.3 C in a half-cell

configuration. The a, top and b, bottom of ThA, and ¢, top and d, bottom of PrL-ThA.
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Fig. S16 Cross-sectional SEM images of a, LFP and b, NCM&811 electrodes, with thicknesses
of 131 um and 82 um, respectively.
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The calculated value (~85.4%) was calculated as
100% — 110% x (100% — 86.7%) = 85.4%, considering an N/P ratio of
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Fig. S17 Schematic illustration of Li source inventory changes in (a) LFP and NCM&811 half-
cell, and LFP and NCMS811 full-cell with (b) ThA and (c) PrL-ThA at initial formation cycle.

Calculated ICE on (b) is based on the ideal condition, where no irreversible capacity loss occurs

at the cathode, and therefore, the measured ICE is lower than calculated ICE.
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Fig. S18 Voltage profiles of each cathode in a half-cell configuration. The measurements were
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01 99.4% and b, NCM811 (2.5-4.2 V) showing an ICE of 88.8%.
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demonstrating the stable performance of PrL-ThA over 200 cycles.
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initial formation cycle in the NCM&811 full-cell configuration.
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Table S1. EIS fitting results for ThA and PrL-ThA before and after the formation cycle.

Before formation After formation
Samples
P R, Re Reoal R, Ret | Ra | Riw
(ohm) (ohm) (ohm) (ohm) (ohm) (ohm) (ohm)
ThA 1.5 344.8 346.3 2.2 77.3 90.5 202.1
PrL-ThA 1.5 207.6 209.1 1.6 27.8 30.8 60.2

S30




Table S2. Detailed description of electrode properties and cell design.

LFP full-cell

NCMS811 full-cell

System
ThA PrL-ThA ThA PrL-ThA
Electrode Anode Cathode Anode Cathode Anode Cathode Anode Cathode
Active
Loading 505 3550 1204 3084  13.11 263 1313 2632
level
(mg cm?)
Loading
level 13.57 32.37 13.47 32.63 13.65 29.22 13.57 29.24
(mg cm™?)
Thickness
(Hm) 65 131 63 131 65 82 63 82
Specific
capacity 428.27 163 428.27 163 428.27 191.82  428.27 191.82
(mAh g)
N/P ratio 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
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Table S3. Summary of reported prelithiation approaches, full-cell architectures, and
corresponding electrochemical performances, including those without prelithiation for
comparison.

Initial Cathode | Anode
Ref. Anode | Cathode Pre-lithiation CE Loading | Loading Cycle Areal Capailty
strategy o Level Level number (mAh cm™)
(%) 2 2
(mg cm?) |(mg cm?)
This .
work Si/G NCMSE11 | Roll-to-Roll 933 26.3 13.13 500 5.63
S9 SUC I emipr | Transfer- | gg 5 6 45 100 2.03
composite printing
S10 si |Nomspz| Lifoi 84.7 10 1 300 2.47
SI11 | Si@SiO2 | NCMSI11 |Li-metal contact| 84 11.5 2.5 200 2.5
S12 (;11\/12 NCM622| Nome | 857 | 17.88 | 7.15 300 3.6
$13 | psi |[Ncmgy| Hithermal foo b e b 02 150 3.08
evaporation
S14  |SiOx/G/C| NCM Li foil 73 N/A 1.2 100 0.24
p-Si .
S15 (CFD) NCMS811 |Electrochemical| 85.4 9.3 0.65 500 2.2
S16 Si-G | NCM8l11 None 82.7 14.6 5.75 100 3.0
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