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Supplementary Fig. 1  | The SEM images of L-LPSCl (a) and S-LPSCl (b). The EIS 
data (c) and XRD profiles (d) of L-LPSCl and S-LPSCl. 

Supplementary Fig. 2 | Voltage curves of symmetric Li | S-LPSCl | Li cell under a high 
current density of 2 mA cm⁻².



Supplementary Fig. 3 | a, The schematic of testing device. b, EIS data of L/S-
LPSCl@NCM composite. c, CA measurement results for L/S-LPSCl@NCM 
composite at 0.1–0.5.

Supplementary Table 1 | Summary of resistance and calculated electronic conductivity 

( ) of composite cathode (S-LPSCl@NCM90@x% VGCF, x=0, 1, 2, 3) under 10 MPa 𝜎𝑒

pressure.

Sample Resistance 
[Ω]  [S cm−1]𝜎𝑒

NCM@0 wt% VGCF 7.87 × 103 9.71 × 10-6

NCM@1 wt% VGCF 1.16 × 103 6.89 × 10-5

NCM@2 wt% VGCF 1.00 × 10 7.64 × 10-3

NCM@3 wt% VGCF 1.30 5.88× 10-2

Chronoamperometry (CA) was measured in the range from 0.1 V to 0.4 V. Regarding 

each values, the current is the average of the last 100 points measured data at each 

voltage. On the other hand, the resistance (R) value was obtained by plotting current 

values from 0.1 V to 0.4 V and calculating the slope through the slope (1/R) using a 

linear fit. Finally, electronic conductivity was calculated using the R obtained through 

linear fit.



Supplementary Table 2 | Summary of electronic conductivity ( ) and ionic 𝜎𝑒

conductivity ( ) of composite cathode (S-LPSCl@NCM90@2% VGCF) under 𝜎𝑖𝑜𝑛

different stack pressure.

Pressure  [mS cm−1]𝜎𝑖𝑜𝑛  [mS cm−1]𝜎𝑒

2 MPa 0.366 7.18

5 MPa 0.370 7.41

10 MPa 0.376 7.66

15 MPa 0.384 8.03

20 MPa 0.396 8.24

25 MPa 0.406 8.40

Supplementary Fig. 4 | SEM images of NCM particles with different Li-PEVA content: 
(a) 1 wt%, (b) 2.5 wt%, (c) 4 wt%. 



Supplementary Fig. 5 | XRD pattern of PEVA, PEVA-LiDFOB and LiDFOB.

Supplementary Fig. 6 | EIS data for PEVA-LiDFOB (mass ratio: 3:2) composite. 



Supplementary Fig. 7 | DRT plot calculated from EIS measurements at different 
voltages. a, bare NCM90 cell after 20 cycles. b, bare NCM90 cell after 100 cycles. c, 
NCM90@Li-PEVA cell after 20 cycles. d, NCM90@Li-PEVA cell after 100 cycles.

Supplementary Fig. 8 | dQ/dV curves for NCM 90@Li-PEVA and bare NCM90 
batteries under 2 mAh cm⁻² areal capacity and 2 MPa stack pressure.



Supplementary Fig. 9 | SEM images of L-LPSCl+NCM cathode (a), S-LPSCl+NCM 
cathode (b) and S-LPSCl+NCM@Li-PEVA cathode (c) and their porosity analysis 
through ImageJ software.
  

Supplementary Fig. 10 | Pressure changes for bare NCM/LTO and NCM@Li-
PEVA/LTO batteries during cycling.

The cathode composite (10 mg) and the electrolyte (80 mg) were laminated following 
the aforementioned procedure. The anode was prepared using the zero-strain material 
Li₄Ti₅O₁₂ (LTO). A composite of LTO, LPSC, and vapor-grown carbon fiber (VGCF) 
in a mass ratio of 35:60:5 was prepared by hand grinding. This anode composite (30 
mg) was then uniformly spread on the opposite side of the LPSC pellet and pressed at 
360 MPa. The assembled cell was tested under a constant stack pressure of 10 MPa. 
The pressure variation shown in the figure corresponds to data from the tenth cycle. 



Supplementary Fig. 11. (a) Long-term cycling performance of ASSLBs with 
NCM90@Li-PEVA composite cathodes under 2C at room temperature (RT) and 10 
MPa stack pressure. (b) The charge/discharge curves of different cycles.  

Supplementary Table 3 | The summary of electrochemical performances of reported 
sulfide-based all-solid-state batteries with NCM cathode under low stack pressure and 
room temperature. 

Number Battery 
Configuration

Number 
of cycles

Rate Capacity
(mAh g-1)

Capacity 
retention rate

Stack 
pressure

Reference

1 DPF-NCA/LPSC/Li 2000 0.2 C 150 65% 2.5 MPa 1

2 NCM/LPSCl/Ag-coated 

Si

200 0.2 C 146 59% 15 MPa 2

3 NCM/LPSCl/MgSiGr 75 0.2C 170 83.7% 20 MPa 3

4 NCM/LPSX/LTO 150 0.2 C 154 72.8% 2 MPa 4

5 NCM/LPSnS /LiIn 150 0.2 C 161 92.6% 3 MPa 5

6 NCM/LPSCl/W/Mg 200 3 C 130 86.7% 15 MPa 6

7 NMC/LPSCl/Mg/W-Cu 150 0.33 C 140 75% 14 MPa 7

8 NCM/LPSCl/LPSCl@Li 800 2C 80 76.3% Coin cell 8

9 AZ@NCM/LPSCl/LiIn 50 0.2 C 169.5 90.8% 2 MPa 9

10 NMC/LPSCl-AlCl3/Li 2200 0.8 C 110 81% 5 MPa 10

This work NCM@Li-

PEVA/LPSCl/Li

1000 1C 176 90.9% 10 MPa This work

3000 2C 160 80% 10 MPa This work



Supplementary Fig. 12 | Composite cathode dry film with 0.2wt% PTFE.

Supplementary Fig. 13 | Initial charge-discharge voltage profiles of the pouch cell at 
0.2C when measured at 25°C and 2 MPa. 



Supplementary Table 4 | Information for calculating the energy density of pouch-type 
ASSLB.

Cell component Materials Mass loading 
(mg cm−2)

Cathode NCM90(80 wt.%) 11.2

SE LPSCl/PTFE (50um 
thick) 8.3 

Anode Li-In 14.3
Discharge capacity 18 mAh

Positive electrode area 3×3 cm−2

SE membrane area
Negative electrode area 3.2×3.2 cm−2

Average discharge voltage 3.11V
Energy density 170.2 Wh kg−1
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