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Experimental section 

Fabrication of Mo2C/C

First, the carbon spheres (C) were synthesized following a previously reported method 

as host.1 Then, Bis(acetylacetonato)dioxomolybdenum(VI) as the molybdenum 

precursor was mixed with C at a 1:1 mass ratio. The mixture was calcined in a tube 

furnace at 700 °C for 8 hours under a H2/Ar (5% H2) atmosphere, with a heating rate of 

2 °C min-1.

Fabrication of S@Mo2C/C and S@C

Mo2C/C and C were mixed with sulfur powder in a 1:3 mass ratio and thoroughly 
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ground in an agate mortar. The resulting mixture was sealed in an ampoule, placed 

within a quartz tube, and subjected to heating at 155 °C for 12 hours. Afterward, the 

temperature ramped up to 300 °C at a rate of 5 °C min-1 and held steady for 2 h.

Materials characterizations

The morphological characterization was conducted using a field emission scanning 

electron microscope (FESEM, JEOL JSM-7500FA, JSM-7600F). High-resolution 

transmission electron microscopy (HRTEM) images, selected area electron diffraction 

(SAED) patterns, and high-angle annular dark field scanning transmission electron 

microscopy (HAADF-STEM) images, along with energy dispersive spectroscopy 

(EDS) elemental mappings, were obtained using a Thermo Scientific™ Talos F200X. 

X-ray diffraction (XRD) patterns were recorded with a PANalytical Empyrean system 

equipped with Cu Kα radiation. X-ray photoelectron spectroscopy (XPS) 

measurements were carried out using a Thermo Scientific Nexsa spectrometer. 

Thermogravimetric analysis (TGA) was performed with a NETZSCH TGA 209 

analyzer to evaluate the thermal decomposition properties of the samples from 25 °C to 

800 °C at a heating rate of 10 °C min⁻¹. X-ray absorption spectroscopy (XAS) data were 

collected at the XAS and medium energy (MEX-2) beamlines at the Australian 

Synchrotron, ANSTO. In situ electrochemical atomic force microscopy (EC-AFM) 

imaging was achieved using a Bruker Bioscope Resolve AFM system. The in situ 

electrochemical setup featured a three-electrode configuration, with a Na pole serving 

as the counter electrode and reference electrode, and the S@Mo2C/C or S@C electrode 

functioning as the working electrode.

In situ TEM characterization

The Na-S@Mo₂C/C nanobattery was assembled within a FEI Talos F200X TEM using 

an in situ electrical probing TEM holder (ZepTools Co. Ltd., China). The process began 

in an Ar-filled glovebox, where the sample powder was adhered to the rough edge of a 

semi-molybdenum grid, serving as the working electrode. Sodium metal was then 

affixed to the tip of a tungsten (W) probe, functioning as the counter electrode. The W 



probe, equipped with a piezo-motor for precise three-dimensional positioning and 

electrical bias control, facilitated the assembly process. The TEM holder, enclosed in 

an Ar-filled zip-lock bag, was subsequently transferred to the TEM column. Brief 

exposure of the Na metal to air (＜5 seconds) intentionally formed a Na₂O solid-state 

electrolyte layer on its surface, enabling conductive Na-ion transport. Upon establishing 

contact between the sample and the Na₂O/Na layer, a constant bias voltage was applied 

to the W probe, thereby completing the in situ assembly of the Na-S@Mo₂C/C 

nanobattery system.

Electrochemical measurements

The active material, Super P, and carboxymethyl cellulose (CMC) binder were 

combined in a mass ratio of 7:2:1, with water gradually added to create a homogeneous 

slurry. This slurry was uniformly applied to copper foil using a doctor blade and dried 

in a vacuum oven at 50 °C for 12 hours. CR2032 coin cells were fabricated in an argon-

filled glovebox for evaluating the electrochemical performance of the Na-S system. Na 

metal was used as the anode, glass fiber (Whatman GF/D) as the separator, and the 

electrolyte consisted of 1 M NaClO₄ dissolved in a solution of propylene carbonate 

(PC) and ethylene carbonate (EC) (1:1 by volume) with 5 wt% fluoroethylene carbonate 

(FEC) additive. All reported capacities are calculated based on the mass of sulfur. The 

sulfur loading of the electrodes used for the ultrahigh-rate tests is approximately 0.5-

0.8 mg cm⁻² unless otherwise specified, with an electrolyte-to-sulfur (E/S) ratio of 40 

μL mg⁻¹. In the supporting information, the sulfur loadings are explicitly specified as 

~1.2 mg cm⁻² and 3.0 mg cm⁻² for the corresponding datasets. For the pouch cell, the 

S@Mo₂C/C cathode was cut into a 50 mm × 40 mm rectangle, and the sulfur loading is 

1.2 mg cm-2. Cycling stability and rate capability were tested on a LAND battery testing 

system at ambient temperature. Cyclic voltammetry (CV) and electrochemical 

impedance spectroscopy (EIS) analyses were carried out using a Bio-Logic VMP3 

potentiostat. The CV measurements were conducted at a scan rate of 0.1 mV s⁻¹. Tafel 

plots were derived by fitting the linear region of the log (current density)-voltage plots 

before the appearance of the oxidation and reduction peaks. The EIS measurements 



were carried out using a frequency range from 100 kHz to 10 Hz under open-circuit 

voltage conditions. 

Computational methods

Spin-polarized density functional theory (DFT) calculations were carried out using 

the Vienna Ab initio Simulation Package (VASP).2, 3 The interactions between ionic 

cores and valence electrons were described by the projector augmented-wave (PAW) 

method.4 Exchange-correlation effects were treated within the generalized gradient 

approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) functional.5, 6 A plane-

wave kinetic energy cutoff of 450 eV was employed. The Monkhorst-Pack scheme with 

a k-point separate on length of 0.05 Å-1 was utilized for sampling the first Brillion zone, 

setting as 3×3×1. A vacuum layer of 15 Å was introduced normally to the surface to 

eliminate spurious interactions between periodic images. All atomic structures were 

fully relaxed using the quasi-Newton algorithm until the total energy converged to 

within 1.0 × 10⁻⁵ eV and the residual force on each atom was less than 0.01 eV Å⁻¹.

Gibbs free energy profiles were constructed to evaluate the thermodynamics of the 

reaction pathway. The Gibbs free energy change (ΔG) for each elementary step was 

calculated based on the zero-point energy (ZPE)-corrected DFT total energy, which 

was taken as the enthalpy at 0 K, according to:

Δ𝐺 = Δ𝐻 ‒ 𝑇Δ𝑆 =  Δ𝐸𝐷𝐹𝑇 +  Δ𝐸𝑍𝑃𝐸 +  
298.15𝐾

∫
0

Δ𝐶𝑉𝑑𝑇 ‒ 𝑇Δ𝑆

Where  is the total energy difference obtained from DFT optimization,  is the  Δ𝐸𝐷𝐹𝑇 Δ𝐸𝑍𝑃𝐸

zero-point vibrational energy correction,  denotes the heat capacity difference,  is Δ𝐶𝑉 𝑇

the kelvin temperature, and  represents the entropy difference. Δ𝑆

Projected density of states (PDOS) analysis was performed using the VASPKIT 

package based on the optimized structures.7 The atom-pair-specific crystal orbital 

Hamilton population (COHP) analysis was performed using the LOBSTER program, 

which projects wave-functions (from PBE calculations) onto target atoms via Mulliken 

population analysis.

The fabrication process of the Mo₂C/C composite and the S@Mo₂C/C cathode is 



schematically illustrated in Fig. S1. The cross-linked carbon spheres were synthesized 

following a previously reported strategy.1 Briefly, uniform MnCO₃ microspheres were 

first obtained via a coprecipitation method (Fig. S2), and then calcined at 550 °C under 

an Ar atmosphere to yield porous Mn₂O₃ microspheres composed of interconnected 

nanoparticles (Fig. S3). These were subsequently annealed at 650 °C under an Ar 

atmosphere to produce MnO@C intermediates, which were then acid-etched with dilute 

HCl to remove the MnO core, resulting in a hierarchically porous, cross-linked carbon 

framework (Fig. S4). This hierarchical conductive architecture serves not only as a 

robust physical barrier to confine sulfur but also as a favorable matrix for uniformly 

anchoring catalytic sites. Bis(acetylacetonato)dioxomolybdenum(VI) was used as the 

Mo precursor to synthesize ultrasmall Mo₂C nanoparticles via in situ pyrolysis. The 

resulting Mo₂C/C and S@Mo₂C/C composites retain the interconnected spherical 

morphology (Fig. S5-S6).

Figure S1. Schematic fabrication process and structure of S@Mo2C/C composite and 
sulfur reduction process.

Figure S2. (a-c) SEM images of MnCO3 sphere.



Figure S3. (a-b) SEM images of Mn2O3 sphere.

Figure S4. SEM images of carbon sphere.

Figure S5. SEM images of Mo2C/C.

Figure S6. SEM images of S@Mo2C/C.



Figure S7. The PDOS of d orbital of (a) Mo2C/C and (b) Mo2C/C-Na2S4.

Figure S8. The PDOS of d orbital of Mo2C/C and S p orbital of Na2S4 after Na2S4 
adsorption.

Figure S9. HAADF-STEM image of S@Mo2C/C.



Figure S10. Rietveld refined XRD patterns of (a) Mo2C/C and (b) S@Mo2C/C.

Figure S11. HAADF-STEM image and corresponding elemental mapping images of 
S@Mo₂C/C.

Figure S12. (a) Thermogravimetric (TG) profiles of S@Mo2C/C and S@C. (b) N2 
adsorption/desorption isotherms; inset shows the pore volumes.
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Figure S13. Survey XPS spectrum of S@Mo2C/C.

Figure S14. (a) CV curves of S@Mo₂C/C and S@C. (b-c) Tafel plots of S@Mo₂C/C 
and S@C as noted in (a) for the first cathodic reduction and anode oxidation process.



Figure S15. Cycling performance of (a) Mo2C/C and (b) C at 200 mA g-1.

Figure S16. (a) Nyquist plots of S@Mo₂C/C and S@C. (b) Equivalent circuit model.

 Figure S17. (a) Cycling performance of S@Mo₂C/C at 1 A g-1. (b) Long-term cycling 
performance of S@Mo₂C/C at high rate of 10 A g-1.
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Figure S18. Cycling performance of S@Mo2C/C cathode with error bars at 20 A g-1.



Figure S19. Galvanostatic charge-discharge (GCD) curves of (a) S@Mo2C/C, and (b) 
S@C with different rest time.

Figure S20. XPS spectra of F 1s of Na metal anodes from (a) S@Mo2C/C and (b) S@C 
after three cycles.



Figure S21. (a) Rate performance of S@Mo₂C/C and S@C with sulfur loading of ~1.2 
mg cm⁻². (b) Cycling performance at 200 mA g-1 with sulfur loading of ~1.2 mg cm⁻². 
(c) Cycling performance at 1 A g-1 with sulfur loading of ~1.2 mg cm⁻². (d) Cycling 
performance at 200 mA g-1 with sulfur loading of ~3 mg cm⁻². (e) Long-term cycling 
performance of S@Mo₂C/C at high rate of 10 A g-1 with sulfur loading of ~1.2 mg cm⁻².

Figure S22. SEM images of (a) S@Mo2C/C cathode and (b) S@C cathode after 100 
cycles at 1 A g-1.



Figure S23. (a) Galvanostatic intermittent titration technique (GITT) curves of 
S@Mo2C/C and S@C cathodes for Na-S batteries. (b-c) The Na-ion diffusion 
coefficient during the discharging process and charging process.

Figure S24. (a) Contour plots of CV patterns of S@Mo₂C/C. (b) Contour plots of CV 
patterns of S@C. (c) The ratios of capacitive/diffusion contributions in S@Mo₂C/C 
under various scan rates.

Figure S25. Ex situ HRTEM images with the corresponding fast Fourier transform 
(FFT) patterns at discharge of 1.2 V in the first cycle.



Figure S26. Ex situ HRTEM images with the corresponding FFT patterns at charge of 
1.5 V and 2.0 V in the first cycle.

Table S1. Quantitative EXAFS fitting results of Mo2C/C and S@Mo2C/C.

Sample Scattering 
path

Distance 
(Å)

C.N. σ2 (Å2) ΔE0 (eV)

Mo-C 2.13 2.1 0.005 -3.1Mo2C/C
Mo-Mo 2.97 4.9 0.005 -3.1
Mo-C 2.11 2.24 0.004 0.716
Mo-S 2.43 0.75 0.004 0.716

S@Mo2C/C

Mo-Mo 2.99 3.60 0.004 0.716
S0

2 of Mo=0.8

Fourier transform of k range is 3-12 Å-1.
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