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1. Experimental Procedures

1.1 Chemical reagent

Ectoine (Ect, C¢H10N202, =98.0%) was purchased from Beijing InnoChem Science & Technology Co.,
Ltd. Zinc sulfate heptahydrate (ZnSO4:7H,0, =99.0%), iodine (I, =99.99%), sodium iodide (Nal,
= 99.0%), potassium iodide (KI, = 99.0%), sodium sulfate (Na;SOs-7H,0, = 99.0%) and

polytetrafluoroethylene (PTFE) aqueous dispersion (60 wt.% solid content) were purchased from
Sigma-Aldrich. Zn foils, Cu foils, Ketjenblack (KB), titanium mesh (100 mesh) were provided by Canrd
New Energy Technology Co., Ltd. The glass fiber (GF/A 2916, Olegeeino) was provided by Chongging
Olegee Technology Co., Ltd.

1.2 Electrolyte preparation

The base ZnSO4 electrolyte was prepared by dissolving ZnSO4:7H,0 in deionized water with the
concentrations of 2 M. Ect electrolytes with varying concentrations (0.5 wt.%, 5 wt.%, 10 wt.%, 20
wt.%, and 35 wt.%, calculated based on electrolyte mass) were prepared by adding the
corresponding amount of Ect to 2 M ZnSO4 electrolyte. The optimized Ect concentration was

determined to be 5 wt.%.

1.3 Preparation of KB—I, electrodes

KB and |, were mixed at a 3:7 mass ratio and manually ground for 10 min. The mixture was then
hermetically sealed in a quartz tube and subjected to thermal treatment at 80 °C for 6 h, resulting
in the formation of KB—I, composite powder. For KB—I; electrode preparation, the KB—I, composite
powder was blended with KB and PTFE in a mass ratio of 8:1:1. The mixture was then compressed
onto a Ti mesh and dried at 40 °C for 2 h to eliminate any residual solvents. For Zn—I, coin cells, the
I loading in the cathodes was controlled within the range of 7-10 mgiodine cm~2, While for Zn—I, pouch
cells, a higher I, loading of 19-20 mgjodine cm™ was employed. Notably, all reported I, loadings refer

to the amount calculated per single side of the cathode.

1.4 Electrochemical measurements

To evaluate the CE of the Zn anode, a Zn| | Cu asymmetric cell was assembled. During the test, Zn
was plated onto a Cu foil (19 mm in diameter) at a predetermined current density, followed by
stripping at the same current density until the voltage reached 0.8 V. To investigate the stability of
the Zn plating/stripping process, a Zn| | Zn symmetric cell was assembled using two Zn foils (16 mm
in diameter), with glass fibers (19 mm in diameter) as a separator. For Zn—I, coin cells, KB—I,

electrodes were paired with Zn foil and assembled as CR2032 coin cells, where glass fibers served as
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the separator and either pure 2 M ZnSOs or Ect electrolyte was used as the electrolyte. GCD
measurements of Zn—I, coin cells were conducted using a battery test system (CT-4008T, Neware,
China) within a voltage range of 0.6-1.6 V. All current densities were calculated based on the mass
of I,. CV measurements were performed using an electrochemical workstation (CHI660E, Chenhua,
China). To evaluate Zn plating/stripping under 50% ZUR, Zn| | Cu asymmetric cells were assembled
using Zn foils (16 mm in diameter) and Cu foils (19 mm in diameter). Prior to cycling, the Cu
electrodes were pre-activated at 2 mA cm™ and 1 mAh cm™ for 20 cycles. Subsequently, 4 mAh cm™
of Zn was pre-deposited onto the Cu foil at a current density of 2 mA cm~2. During subsequent cycling,
the Zn||Cu asymmetric cells with Zn pre-deposited Cu electrodes were cycled at 2 mA cm™2 and
2 mAh cm™. For Zn plating/stripping under 70% ZUR, after pre-depositing the same amount of Zn,
the Zn| | Cu asymmetric cells were cycled at 2 mA cm™2 and 2.8 mAh cm™.

The single-layer Zn—I; pouch cells with limited Zn supply were assembled by stacking one
double-side coated KB—I; electrodes (70 x 80 mm) with two Zn-plated Cu foils (72 x 82 mm). The Zn-
plated Cu foils (Zn@Cu) were prepared in a galvanic bath filled with Ect electrolyte, where Zn
deposition was carried out at a current density of 6.6 mA cm™2 to achieve the required Zn capacity.
Glass fibers were used as the separator, while 2 M ZnSO4 (base) or Ect electrolyte served as the
electrolyte. The KB—I; electrodes for pouch cells were fabricated by pressing a mixture of KB—I,, KB,
and PTFE onto both sides of a titanium mesh current collector. The electrochemical performance of
the Zn—I; pouch cells was evaluated within a voltage range of 0.6—1.6 V using the battery test system
(CT-4008T, Netware, Shenzhen, China) under the ambient conditions.

The multi-layer Zn—I; pouch cells were assembled by stacking two double-sided KB—I, cathodes
(80 x 90 mm) with three Zn@Cu anodes (82 x 92 mm, comprising two single-sided Zn@Cu and one
double-sided Zn@Cu anode). Glass fiber and the Ect electrolyte served as the separators and
electrolytes, respectively. The electrochemical performance was measured within the voltage range
of 0.6-1.6 V using the same battery test system under ambient conditions.

The self-discharge rate was evaluated using the following protocol: (1) Each cell was first charged
galvanostatically at 1 C to 1.6 V. The charge capacity was recorded as C;, and the cell voltage at the
beginning of the rest period was recorded as Vi. (2) The cell was then rested under open-circuit
conditions for a predefined duration (0.5, 1, 2, 6, 12, 24, and 48 h). The cell voltage at the end of the
rest period was recorded as V,. (3) After the rest period, the cell was discharged galvanostatically at
1 C to 0.6 V, and the discharge capacity was recorded as C,. (4) To minimize potential bias arising

from interfacial instability after prolonged resting, the cell was further cycled for 5 cycles at 2 C
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between 0.6 and 1.6 V before proceeding to the next self-discharge interval. Based on these
measurements, the self-discharge rate was defined as C,/C;, and the voltage drop during the rest

period was calculated as V1-V».
2. Characterization Techniques

XRD patterns were collected using a Rigaku Ultima IV X-ray diffractometer with Cu Ka radiation (A =
1.5418 A). Field emission scanning electron microscopy (FE-SEM, Hitachi SU 8010) was used to
observe sample morphology, while EDS was employed for elemental analysis. To examine the cross-
sectional morphology of Zn, Leica EM TIC 3X ion beam milling technology was used to expose the
sample cross-sections. UV-Vis spectroscopy was conducted on a Shimadzu UV-2600i
spectrophotometer. XPS measurements were performed using a Thermo Fisher Scientific K-Alpha X-
ray photoelectron spectrometer with Al Ka X-ray source. The binding energies were calibrated
against the C—C peak at 284.8 eV. FTIR spectroscopy was recorded on a Nicolet iS50 spectrometer.
'H NMR spectra of the mixed Ect/triiodide solutions were collected on a Bruker AVANCE 111 300 MHz
spectrometer at 298 K and samples were prepared in 90 vol.% H,0/10 vol.% D,0 and transferred
into NMR tubes.

Raman spectroscopy was conducted using a Renishaw inVia Raman microscope with a 532 nm
wavelength laser. In situ Raman spectra of electrodes were obtained using a two-electrode Raman
cell (Gaoss Union, BO02-RM). Zn—I; cells were galvanostatically charged and discharged using an
electrochemical workstation (CHI660E, Chenhua, China). Raman spectra were collected through the
guartz window of the Raman cell using a Raman microscope.

In situ UV-Vis spectroscopy was performed to monitor the dissolution behavior of polyiodides.
A custom-designed quartz cell was prepared by adhering KB—I, electrodes and Zn anodes to the
rough sides of the quartz cell. The cell was then filled with 3 mL of electrolyte (base or Ect). GCD
cycling of the quartz battery was conducted using an electrochemical workstation (CHI660E,
Chenhua, China) over a voltage range of 0.6—-1.6 V. UV—-Vis spectra were collected in real time to
monitor the polyiodide dissolution during the cycling process.

In situ differential electrochemical mass spectrometry (DEMS) was conducted on an online
DEMS system (HPR-40, Hiden Analytical) to monitor gas evolution during electrochemical processes
using a modified DEMS cell. The pressure difference between the electrochemical cell and the
vacuum chamber enabled the generated H; to be continuously extracted into the vacuum chamber
for mass-spectrometric analysis. The working electrode consisted of a 50 nm Au film sputtered onto

a PTFE membrane (pore size: 0.02 um). An Ag/AgCl electrode (Pine Research) and a Pt wire were
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used as reference and counter electrodes, respectively. During measurements, linear sweep
voltammetry (LSV) was conducted from 0 to -1.2 V (vs. Ag/AgCl) at a scan rate of 5 mV s™* using an
electrochemical workstation (CHI660E, Chenhua, Shanghai). Gas species released during the
cathodic scan were continuously transferred to the vacuum chamber and analyzed by the mass

spectroscopy.
3. Theoretical Calculations

MD simulations were performed using the GROMACS package. The simulations employed the
Amber03 force and the TIP3P water model. The systems underwent energy minimization and
equilibration under the NPT ensemble, followed by production runs of 10 ns under the canonical
ensemble. Temperature coupling to 298 K was achieved using the Nose-Hoover method, and
pressure was coupled to 1 atm using the Parrinello-Rahman method. A cutoff scheme of 1.2 nm was
applied for non-bonded interactions, and the Particle Mesh Ewald method with a Fourier spacing of
0.1 nm was used for long-range electrostatic interactions. The LINCS algorithm was used to constrain
all covalent bonds involving hydrogen atoms. The electrostatic potential was calculated by ORCA
package. The structural relaxation, single-point energy calculations, were performed under the
B3PLYP-D3/def2-TZVP.

All DFT calculations were performed using the Gaussian 16 software package.! Geometry
optimizations were carried out at the B3LYP?/def2-TZVP? level of theory, incorporating Grimme’s
DFT-D3 dispersion correction*® to account for long-range van der Waals interactions. Default
convergence thresholds were employed, with maximum force and displacement criteria set to
<0.00045 Hartree/Bohr and <0.0018 A, respectively. Harmonic vibrational frequency analyses were
conducted at the same level of theory to confirm that the optimized structures correspond to true
minima on the potential energy surface, as indicated by the absence of imaginary frequencies (v > 0
cm™). Typically, the conversion from “*+Is” to “*|s” represents the adsorption of Is species.

To ensure theoretical consistency, single-point energy calculations were performed on the
optimized geometries using the same B3LYP/def2-TZVP level. The binding energy (BE) between
interacting species was calculated according to the following equation:

BE = Ecomplex — (Eq + Ep) (Equation 1)
where Ecomplex is the total energy of the optimized supramolecular complex, and E; and E, represent

the energies of the isolated components in their optimized geometries.
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Fig. S1 DFT-calculated energies of Ect in the uncharged and charge-separated states in (a) vacuum

and (b) aqueous environment.
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Fig. S2 FTIR spectra of Ect aqueous solution.
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Fig. S3 FTIR spectra of Ect powder and the Ect—KI3 mixture in the range of 1800-1400 cm™.
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Fig. S4 FTIR spectra of TMAC powder and the TMAC—KI3 mixture in the range of 3800-600 cm™
(insets: digital photographs of the TMAC—KI3 mixture after heating to 80 °C).
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Fig. S5 'H NMR spectra of Ect solutions with different I3~ concentrations (insets: expanded view of

the 'H chemical shift region from 10 to 7 ppm).
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Fig. S6 Ramans spectra of Kls and the Ect—Kls mixture dissolved in ZnSO4 solution.
5-8



Fig. S7 Digital photograph of mixed solutions containing different concentrations of Ect and I3~ after

60 days of storage in plastic test tubes.
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Fig. S8 CV profiles for iodine conversion in base, TMAC and Ect electrolytes at 1 mV s™*
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Fig. S10 (a) Cathodic and (b) anodic peak potentials from the CV profiles of Zn—I, batteries at different

scan rates. (c) Comparison of overpotentials in different electrolytes at various scan rates.

Overpotential is defined as the difference between anodic and cathodic peak potentials.
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Fig. S17 (a) Snapshot of the base electrolyte obtained from AIMD simulations, with an enlarged view

of the Zn?* solvation structure. (b) RDFs for Zn**—0 (H,0) and Zn?*—0 (SO4?") collected from AIMD

simulations in the base electrolyte.
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Fig. S18 Raman spectra of the base and Ect electrolytes in the 300-550 cm™ region.
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Fig. S19 ATR-FTIR spectra of Ect electrolytes with varying Ect concentrations in the wavenumber

range of 1550-1150 cm™.
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Fig. S20 (a) FTIR spectra and (b) Raman spectra of 2 M Na;SO4 solutions containing different

concentrations of Ect.
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Fig. S27 Comparison of cycling stability and voltage hysteresis of Zn||Zn symmetric cells under
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Fig. S28 Overpotential evolution of Zn| |Zn symmetric cells using (a) base and (b) Ect electrolyte.
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Fig. S29 Nyquist plots of Zn||Zn symmetric cells at different temperatures in (a) base and (b) Ect
electrolytes. (c) Corresponding Arrhenius plots and comparison of desolvation energies of Zn||Zn

symmetric cells in the two electrolytes.

2 mA cm? 2,8 mAh cm™?- 70% ZUR

Base

e
L)
S

short circuit

/

&
[ =
N
1=
N p.00
w
=
2 0.60
s
2
,'f, 0.40
Q
o

0.20

0.00

0 100 200 300 400 500 600
Time (h)
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Fig. S31 Top-view SEM images of Zn deposition morphology in base electrolyte at 2 mA cm™2 and 4

mAh cm™ at (a) low magnification and (b) high magnification.

Fig. S32 Top-view SEM images of Zn deposition morphology in Ect electrolyte at 2 mA cm™ and 4
mAh cm~2 at (a) low magnification and (b) high magnification.
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Fig. S34 GCD curves of Zn—I, batteries at different current densities.
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Fig. S36 GCD curves of Zn—I, batteries using different electrolytes at 50 C.
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Fig. S37 Comparison of raw-material prices and cycling life of this work with previously reported
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Fig. S38 FTIR spectra of the Ect electrolyte collected before after cycling at 50 C in the wavenumber
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Fig. S39 Digital photograph of the 400 mAh Zn—I, pouch cell.

Fig. S40 Digital photograph of the galvanizing bath used for Zn deposition in: (a) disassembled state

and (b) assembled state.
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Fig. S41 Digital photograph of Zn plated on a Cu foil at a current density of 6.6 mA cm™2 in the Ect

electrolyte.

Fig. S42 Digital photographs of (a) front side and (b) back side of glass-fiber separator and (c) front
side and (d) back side of the Zn@Cu anode recovered from a disassembled pouch cell (ZUR = 65%)

after 1,200 cycles.
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Table S1 Comparison of key performance parameters and cycling life of this work with representative

Zn-l; coin cells reported recently

. Loading Current density Capacity L
Strategies Cycling life Ref.
g (mgiodine Cm_z) (A g_l) (mAh g_l) Y &
~ 0, H
Ect 7.56 10 140.2 100%, 60,000 This
cycles work
0,
BE-HEI 9.7 2 122.2 >0.0%, 50,000 6
cycles
0,
Zn-PCA 3 10 162.7 87.0%, 30,000 7
cycles
0,
MeOH-TI 1.2 10 115 95.0%, 20,000 8
cycles
o,
LA133 7.82 2 129.44 80.9%, 2,700 9
cycles
0,
PNC-1000 6 1 170 89.0%, 10,000 10
cycles
0,
I,/OSTC 4 1 153 85'0c/\°/'c|12'000 11
PC@Fe;N- ~86.0%,
4/1, 4.5 2 153 20,000 cycles 12
~ [0)
Zn-CCS 3 2 115 15 0%%?:52%5 13
~ o)
NiSAs-HPC 1 10 108 40 O%Eij(;les 14
~ o)
M9 1.2 2 161.9 10 Oz)z()-ijéles 15
ZT-12/NS- ~78.2%, 5,000
. 1 1 1
20 6.5 33 cycles 6
o,
Co@AC 1 1 112.3 68.0%, 1,000 17
cycles
~ 0,
KHP 2 10 113.8 75.8%, 8,800 18
cycles
(o)
c-CNFs 13.9 2 130.5 98.7%, 4,000 19
cycles
o,
Z@M-Zn 6 1 120 86.1%, 2400 20
cycles
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Table S2 Comparison of additive prices and cycle life of this work with representative Zn—I, battery

system reported recently

. Cycling Price . .

Strategies life (USD kg™?) Supplier Ref. Price source

. . ) . https://www.chemical

Ect 60000 498 Hubei Hocllgjlrsthemlcal \;\r/zlrsk book.com/SupplyInfo
v _481044.htm

https://www.tcichemi

TMSI 6500 360.11 TCI Shanghai 21 cals.com/CN/zh/p/T1

056

) https://www.macklin.

BMMIMTESI 3500 1963 Macklin Inc. 22 cn/products/B857249

https://www.acmec-

BE-HEI 50000 270.04 ACMEC 6 e.com/product/h5836

0
https://www.acmec-
BMIS 15000 5364.7 ACMEC 23 e.com/product/b9332
0

. https://www.amole.c

EMIM 18000  842.57 Biots:cah”ngc:'lz' Arg;"eu . 24 om.cn/product/PNOa
By ~0., 1iC. 218569.html

. https://www.macklin.

RSC 17000 48.3 Macklin Inc. 25 en/products/R817302

. https://www.chemical

KHP 9000 22.7 Bij?:cnhgnh;LKanéanﬁ 4 18 bookcom/Supplylnfo
gy L0., Lid. _520876.htm

. https://www.amole.c

CHS 16000  665.86 Shanghai Amole 26 om.cn/product/PNOA

Biotechnology Co., Ltd.

144965.html|
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Table S3 Comparison of the practical application potential of this work with representative Zn—I,

battery system reported recently

Areal Capacity

Strategies (mAh cm™?) Zn utilization (%) Cycling life Ref.
0,
Ect 6.95 80 80.0%, 310 This work
cycles
0,
Ect 7.1 65 80.0%, 1,060 This work
cycles
~ (o)
cCNF/AC 0.94 8.47 89.8%, 400 27
cycles
~ (o)
ZT-12/NS-20 0.69 20 94.1%, 600 16
cycles
0,
MX-AB@I 4 78.7 94.4%, 200 28
cycles
0,
PAH-PCH 2.77 33.3 76.9%, 100 29
cycles
~ o)
AHE 1.5 20 87.1%, 300 30
cycles
0,
BBAS 2.33 33 87.1%, 350 31
cycles
~ o)
ZS-EAc 1.46 33 88.0%, 200 32
cycles
Dowex+Fe- ~85.7%, 800
SCNT/GF 36 20 cycles 33
~ o,
CCH 1.5 35.7 100%, 150 34
cycles
~ (o)
Sb,0;@Zn 3.9 14.7 93.5%, 100 35
cycles
0,
ZSO+ACES-K(0.5) 5.7 9.7 78.8%, 600 36
cycles
0,
ZS0+Csl 2.26 17.8 >4.8%, 100 37
cycles
0,
BMIS 3.97 82 94.1%, 130 23
cycles
0,
SP-ZnCl; 3.47 20 95.0%, 1,000 38
cycles
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