Supplementary Information

Interfacial degradation mechanism in inverted perovskite solar

cells with sol-gel derived NiO_x hole transport layer

Abraha Tadese Gidey,^{a,b,c,*} Elias Assayehegn,^c Esayas Alemayehu,^d Alexander R. Uhl,^b and Jung Yong Kim^{e,f,*}

^a Faculty of Materials Science and Engineering, Jimma Institute of Technology, Jimma University, Jimma P.O. Box 378, Ethiopia

^b Laboratory for Solar Energy and Fuels (LSEF), School of Engineering, The University of British Columbia, Kelowna V1V1V7, Canada

^c Department of Chemistry, College of Natural and Computational Sciences, Mekelle

University, Mekelle P.O. Box 231, Ethiopia

^d Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma P.O. Box 378, Ethiopia

^e Department of Materials Science and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia

^f Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia

* Correspondence:

Abraha.tadesse@mu.edu.et (A.T.G.)

jungyong.kim@astu.edu.et (J.Y.K.)

Figure S1. Synthesis pathway of NiO_x sol-gel and thin films

Figure S2. (a) XRD patterns of NiO_x thin films deposited on the glass substrate and (b) unit cell of NiO displaying face-centered cubic (FCC) structure.

Figure S3. Top SEM images (a) bare FTO and (b) NiO_x

Figure S4. Top AFM images of: (a) bare FTO, (b) NiO_x deposited on FTO, (c) 3D AFM images bare FTO, and (d) 3D AFM image of NiO_x deposited on FTO.

Figure S5. (a) Work function of NiO_x , (b) Energy levels of each layer used in inverted MAPbI₃-based PSCs.

Figure S6. Energy-level diagram showing the valence band (VB) and conduction band (CB) positions of various common perovskites.

Figure S7. Statistical box plots of the PV parameters: (a) V_{OC} , (b) J_{SC} , (c) FF, and (d) PCE, obtained from MAPbI₃-based fresh devices using NiO_x as HTL.

Figure S8. *J-V* of the champion CsFAMA-based perovskite solar cells.

Table S1. Photovoltaic performances of the NiO_x -based inverted perovskite solar cells. The statistics are based on 10 devices.

Device Structure	$V_{\rm OC}({ m V})$	$J_{\rm SC}({\rm mA/cm^2})$	FF (%)	PCE (%)
FTO/NiO _x /MAPbI ₃ /PCBM/Ag	1.02 ± 0.03	23.40 ± 0.48	76.01 ± 2.52	18.04 ± 0.18
FTO/NiO _x /CsFAMAPbI ₃ /PCBM/Ag	1.06 ± 0.41	21.69 ± 0.60	78.05 ± 1.90	17.99 ± 0.22
FTO/NiO _x /MeO-2PACz/ CsFAMAPbI ₃ /PCBM/Ag	1.08 ± 0.34	22.37 ± 0.52	79.56 ± 1.36	19.13 ± 0.34