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Experimental Methods

Monomer Synthesis

Diethyl (4-nitrophenyl)phosphonate:

A published procedure! was adjusted as follows: 1-iodo-4-nitrobenzene (10 g, 49.5 mmols, 1 eq.),
triethylamine (20 g, 198 mmol, 4 eq.), diethyl phosphite (7.5 g, 54.5 mmol, 1.1 eq.), Pd(PPh;),
(1.14 g, 0.99 mmol, 0.02 eq.), and 250 mL of anhydrous toluene were added under inert
atmosphere to a 500 mL round bottom flask equipped with a magnetic stir bar and a reflux
condenser. The mixture stirred under reflux at 120 °C for 24 hours before cooling to room
temperature. The reaction was filtered, and the filtrate was concentrated in vacuo and then
redissolved in ethyl acetate. The organic layer was washed with 1M HCI, 2 M NaOH, and then
brine. All organic layers were collected, dried over with sodium sulfate, filtered, and concentrated
in vacuo. The crude product was then purified via silica gel chromatography using 1:1
hexanes:ethyl acetate (ETOAc), 100% DCM, and then 100% EtOAc to obtain dark red oil (8.1 g,
67% yield). '"H NMR (500 MHz, CDCl3) & 8.39 — 8.14 (m, 2H), 8.14 — 7.88 (m, 2H), 4.32 — 4.00
(m, 4H), 1.33 (td, J=17.1, 0.6 Hz, 6H).3'P NMR (202 MHz, CDCl3)  15.37. 3C NMR (126 MHz,
CDCl5) 6 150.25, 150.22, 136.53, 135.04, 133.00, 132.91, 132.11, 128.56, 128.46, 123.41, 123.29,

62.81, 62.77, 16.35, 16.30.

Diethyl (4-aminophenyl)phosphonate:

A published procedure? was adjusted as follows: Diethyl (4-nitrophenyl)phosphonate (4.0 g, 15.3
mmol, 1 eq.), anhydrous tin (II) chloride (11.6 g, 61.2 mmol, 4 eq.), and 100 mL of absolute ethanol
were added to a 500 mL round bottom flask equipped with a magnetic stir bar. The mixture was

refluxed for 12 hours and then cooled to room temperature. The mixture was concentrated in vacuo



and suspended in 2 M KOH in distilled water. A precipitate immediately formed and filtered and
washed excessively with ethyl acetate. The filtrate was collected and washed with distilled water
(x1) and brine (x1) and then all organics were collected dried over with sodium sulfate, filtered,
and concentrated in vacuo to receive a viscous yellow oil that solidifies (2.7 g, 77% yield). 'H
NMR (500 MHz, DMSO) & 7.33 (dd, J = 12.5, 8.5 Hz, 2H), 6.74 — 6.50 (m, 2H), 4.05 — 3.79 (m,
4H), 1.20 (t,J=17.1 Hz, 6H).3'P NMR (202 MHz, DMSO) 6 21.82. *C NMR (126 MHz, DMSO)

0 153.03, 153.00, 133.42, 133.33, 113.53, 113.41, 113.35, 111.78, 61.38, 61.34, 16.67, 16.62.

Molecule Synthesis

Tetraethyl ((1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,-diyl)bis(4, I-
phenylene))bis(phosphonate) [NDI-(PhDEP),]:

Napthalenetetracarboxylic dianhydride (0.78 g, 2.9 mmol, 1 eq.) and 25 mL of glacial acetic acid
were added to a 250 mL round bottom flask equipped with a magnetic stir bar. The reaction stirred
for 10 minutes at 60 °C before diethyl P-(2-aminoethyl)phosphonate (2.0 g, 8.7 mmol, 3 eq.) was
added. The temperature was raised to 90 °C and the reaction was left to stir for 48 hours.
Afterwards, the reaction cooled to room temperature before precipitating into cold distilled water.
The precipitate was filtered and washed excessively with distilled water. The filtered powder was
then placed under high vacuum to dry for 24 hours and then purified via silica gel chromatography
using 100% DCM to 20% MeOH in DCM to obtain a light brown powder (1.13 g, 50% yield). 'H
NMR (500 MHz, CDCls) & 8.89 (s, 4H), 8.07 (dd, J = 13.0, 8.4 Hz, 4H), 7.57 — 7.41 (m, 4H), 4.38
—4.09 (m, 8H), 1.41 (t, /= 7.1 Hz, 12H). 3'P NMR (202 MHz, CDCl;) § 17.67. 3C NMR (126
MHz, CDCl;) 6 162.63, 153.89, 138.14, 133.19, 133.10, 131.66, 128.91, 128.78, 126.96, 62.47,

62.43,32.44,16.43, 16.38.



((1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn] [ 3,8 phenanthroline-2,-diyl)bis(4, I -
phenylene))bis(phosphonic acid) [NDI-(PhPA),]:
Tetraethyl((1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][ 3,8 |phenanthroline-2,-diyl)bis(4,1-
phenylene))bis(phosphonate) (0.8 g, 1.2 mmol, 1 eq.) and 25 mL of anhydrous dichloromethane
were added to a 100 mL round bottom flask equipped with a magnetic stir bar under an inert
atmosphere. After stirring for 10 minutes at room temperature, bromotrimethylsilane (1.8 g, 11.6
mmol, 10 eq.) was added and the reaction was left to stir overnight at room temperature. After 12
hours, 3 mL of methanol was added, and the mixture was left to stir for an additional 3 hours. The
solution was then concentrated to complete dryness and the powder was suspended in methanol
and filtered. The product was then dried under high vacuum to receive a light tan/brown powder
(0.7 g, 100% yield). '"H NMR (500 MHz, DMSO) 6 8.74 (s, 4H), 7.97 — 7.77 (m, 4H), 7.68 — 7.47
(m, 4H), 3.17 (s, 4H).>'P NMR (202 MHz, DMSO) & 12.30. 3C NMR (126 MHz, DMSO) 6

163.39, 138.39, 131.82, 131.73, 130.95, 129.45, 139.33, 127.49, 127.22, 107.35, 49.07.

2,7-bis(4-bromphenyl)benzo[Imn][3,8]phenanthroline-1,3,6,8(2H, 7H)-tetraone [NDI-(PhBr);] :

Napthalenetetracarboxylic dianhydride (6.0 g, 22.4 mmol, 1 eq.) and 4-bromoaniline (9.6 g, 55.9
mmol, 2.5 eq.) and 100 mL of anhydrous dimethylformamide were added to a round bottom flask
equipped with a stir bar. The reaction mixture was placed on a hot plate at 120 °C and left to stir
overnight. Afterwards, the reaction cooled to room temperature, was filtered, and washed with
methanol to obtain a yellow powder. '"H NMR (500 MHz, DMSO) 6 8.74 (s, 4H), 7.79 (d, J= 8.5
Hz, 4H), 7.46 (d, J = 8.5 Hz, 4H). '3C could not be obtained due to limited solubility and low

resolution. ESI-MS: m/z theoretical 574.9236, obtained 574.9240.



Perovskite Solar Cell (PSC) Fabrication

Patterned fluorine-doped tin oxide (FTO) glass substrates (7 /sq) were sequentially cleaned by
ultrasonication for 15 min in 2% Mucasol (Schiilke) solution, deionized water, acetone (= 99.5%,
Sigma-Aldrich), and isopropyl alcohol (IPA, 99.9%, Fisher Chemical). The cleaned substrates
were then dried with N, gun and subjected to UV-ozone treatment for 15 min. For the electron
transport layer (ETL), a compact TiO, (c-Ti0O;) layer was deposited via spray pyrolysis using a
precursor solution composed of 800 pL titanium diisopropoxide bis(acetylacetonate) 75 wt.% in
IPA (Sigma-Aldrich) and 10.8 mL ethanol (anhydrous, > 99.5%, Sigma-Aldrich). The solution
was sprayed onto preheated substrates at 450 °C in cycles, with 30 s interval between each cycle,
followed by post-annealing at 450 °C for 30 min. Easy spray cycle lasted 16—18 s, with O, supplied
as a carrier gas at a flow rate of 3 L min'!. After cooling to room temperature, a 60 uL 150 mg
mL-" mesoporous TiO, (mp-TiO,) solution was spin-coated statically at 4000 rpm for 10 s
(acceleration: 4000 rpm s-'). The mp-TiO, solution was prepared by diluting TiO, paste (Sigma-
Aldrich) in anhydrous in anhydrous ethanol (= 99.5%, Sigma-Aldrich). The mp-TiO, coated

substrates were then dried at 100 °C for 10 min and sintered at 450 °C for 30 min.

NDI-(PhPA), and NDI-(PhBr), ETL thin films were fabricated using chemical bath deposition
(CBD) method. The cleaned patterned FTO substrates were treated in UV-ozone for 1 hour and
then immersed in a pre-heated 0.5 mg mL! solution of NDI-based ETL molecules in dimethyl
sulfoxide (DMSO, Sigma-Aldrich, > 99.8%) at 100°C for varying durations, maintaining a
constant temperature throughout the process. Following CBD, the substrates were rinsed by

dipping them in ethanol (EtOH) three times, and then annealed at 120 °C for 10 min. All ETL



depositions steps were conducted in ambient air, and the substrates were subsequently transferred

to an N, filled glove box (O, and H,O <4 ppm).

The Csg09FAg.91Pbl; (CsFA) perovskite film was deposited via a two-step spin-coating process
using a 1.2 M precursor solution with 5% excess Pb, prepared by dissolving cesium iodide (Sigma-
Aldrich), formamidinium iodide (GreatCell Solar), and lead iodide (Tokyo Chemical Industry, >
98%) in a 2:1 (v/v) mixture of N,N-dimethylformamide (DMF, Sigma-Aldrich, > 99.8%) and
DMSO. A 90 puLL CsFA solution was spin-coated at 1000 rpm for 10 s (acceleration: 1000 rpm s-
1, followed by 6000 rpm for 20 s (acceleration: 6000 rpm s™!), ensuring uniform solution spreading
prior to spin coating. Three seconds before the end of the second step, 250 uL of chlorobenzene
(Sigma-Aldrich, 99%) was continuously dispensed onto the substrate during spin coating, and the
CsFA film was annealed at 150 °C for 10 min. Next, a 90 puL of phenethyl ammonium iodide
(PEAI, Dyenamo) solution at 1 mg mL-!' in IPA (Sigma-Aldrich, anhydrous, 99.9%), was spin

coated on top of CsFA film at 5000 rpm for 20 s (acceleration: 5000 rpm s!).

For the hole transport layer (HTL), a 90 uL doped Spiro-OMeTAD solution was spin-coated
statically at 3000 rpm for 30 s (acceleration: 3000 rpm s!). A doped Spiro-OMeTAD solution was
prepared by dissolving Spiro-OMeTAD (1-Material) in 0.07 M chlorobenzene (Sigma-Aldrich,
99.9%), followed by the sequential addition of 0.4 mol-to-mol lithium
bis(trifluoromethane)sulfonimide (Li-TFSI, Sigma-Aldrich) in 1.8 M acetonitrile (Sigma-Aldrich,
anhydrous, 99.8%), 3.3 mol-to-mol 4-tertbutylpyridine (tBP, Sigma-Aldrich, 98%), and 0.03 mol-
to-mol tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III)

tri[bis(trifluoromethane)sulfonimide] (FK 209 Co (III), Sigma-Aldrich) in 0.25 M acetonitrile.



From CsFA film to HTL processing, all steps were performed inside N, filled glove box (O, and
H,0 < 4 ppm) at a controlled temperature of 18 °C to 24 °C. The edges of the substrates were
cleaned in ambient air using DMF, followed by acetonitrile, to remove CsFA film and HTL.
Finally, a 50 nm Au metal contact (Kurt J. Lesker, 99.999%) was thermally evaporated through a

shadow mask, forming 8 independent cells per substrate. The active device area is 0.128 cm?.

Characterization

'H, 3C, and 3'P Nuclear Magnetic Resonance (NMR):

NMR spectra for all monomers and molecular precursors were acquired through Bruker Avance
IITHD 500 MHz or Bruker Avance IITHD 700 MHz instruments using CDCI; or DMSO-d6 as
solvent; the residual CHCl; peak was used as a reference for all reported chemical shifts ('H: 6=
7.26 ppm, 3C: &= 77.16 ppm). For 3'P NMR spectra, 85% H3;PO4 was used as the external
reference.

Thermogravimetric Analysis (TGA):

TGA was performed using a Mettler Toledo TGA2 STAR System Thermogravimetric Analyzer.
5 mg of molecules were heated from 50 °C to 700 or 900 °C at a temperature rate of 15 °C min’!

in a N, rich atmosphere.

Ultraviolet-visible (UV-Vis) Spectroscopy:

Absorption, transmittance, and reflectance spectra were measured using Cary 5000 UV-Vis NIR
spectrophotometer. A double-beam configuration was employed to account for the optical
influence of the glass substrate, ensuring accurate measurements for the NDI-based molecular
films. For solution UV-Vis, solution concentration was 0.02 mg mL-! NDI-based ETL molecules

in DMSO.



X-ray Photoelectron Spectroscopy (XPS):

XPS analysis was conducted using a Thermo Scientific K-Alpha system equipped with a
monochromatic Al Ka X-ray source (hv = 1486.6 eV). The incident X-ray beam was aligned at
60° relative to the sample normal, while photoelectrons were collected at 0° emission angle. All
spectra were acquired under high vacuum conditions with the chamber pressure maintained below
1 x 1077 Torr. Both survey and high-resolution scans were obtained. Survey spectra were averaged
over two measurements with 200 eV pass energy, 50 ms dwell time, and 0.1 eV step size. High-
resolution scans were averaged over 20 measurements for C 1s, Br 3d, P 2p, and Ols, while 10
measurements were used for N 1s, S 2p, and CI 2p, and 5 measurements for Sn 3d. Peak fitting
was conducted using the Thermo Scientific Advantage Data System. To correct for potential

surface charging effects, all binding energies were referenced to the C-C (284.8 eV) peak position.

Scanning Electron Microscopy (SEM):

SEM imaging was performed using a Hitachi SU8230 with a secondary electron detector,
operation at 5 kV accelerating voltage and an emission current of 10 mA.

Contact Angle (CA):

CA measurements were conducted using ramé-hart (Model 290) and analyzed through Image J
software via low bond axisymmetric drop shape analysis. To evaluate the surface polarity, 2.5 uL
deionized water (polar) was deposited onto the surface of interest.

Grazing Incidence Wide-Angle X-ray Scattering (GIWAXS):

Synchrotron GIWAXS measurements were carried out at beamline 11-BM of the National
Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory. The X-ray beam had

an energy of 13.5 keV and a spot size of 0.2 mm x 0.05 mm. Samples were irradiated for 10



seconds at incident angles of 0.05°, 0.1°, and 0.5°. The beam divergence was 1 mrad, with an
energy resolution of 0.7%. Data processing and analysis were performed using the SciAnalysis

software package provided by the beamline.

PSC Device Characterization:

The photovoltaic performance of the devices was assessed using a Fluxim Litos Lite system
equipped with a Wavelabs Sinus-70 AAA solar simulator, providing AM 1.5G illumination at
room temperature under ambient conditions. Current-density-voltage (J-V) characteristics were
recorded in both forward and reverse scan directions, sweeping from 1.2 V to -0.5 V at a scan rate
of 50 mV s!. Maximum power point tracking (MPPT) was employed to determine the stabilized
power output over a 120-second period. A mask was utilized to define the cell area of 0.0625 cm?,
while the total active device area remained 0.128 cm?. During measurements, N, gas flow was
introduced, but temperature control was not implemented. No pre-condition treatments, such as

light-soaking or applied bias voltage, were performed prior to testing.

For long-term stability analysis, a Fluxim Litos stress-test platform was used to evaluate device
degradation. The PSCs were exposed to 1 sun equivalent illumination (UV-filtered) in an N,-rich
atmosphere at 25°C or 65°C while continuously operating under MPPT conditions. Stability
measurement followed the International Summit on Organic PV Stability (ISOS) L-11 and L-2I
protocols, where L, 1, 2, I represent light exposure under bias, room temperature operation,
elevated temperature conditions, and an inert atmosphere, respectively3. To monitor performance
degradation, automated J-¥ scans in both reverse and forward directions were acquired every 12
hours thought the stability test. A mask was not applied, and measurements were based on the total

active device area of 0.128 cm?



Supplementary Note 1

To examine the influence of molecular coverage on long-term stability, PSCs incorporating
NDI-(PhPA), and NDI-(PhBr), with a 24-hour CBD process were also tested under ISOS-L-11
conditions (Fig. S24-S25). These devices initially exhibited maximum reverse scan PCEs of
14.02% (median 10.49%) for NDI-(PhPA), and 15.69% (median 12.50%) for NDI-(PhBr), (Fig.
S23, Table S3). The NDI-(PhPA), devices demonstrated linear degradation trends, indicating that
sufficient molecular coverage is critical for maintaining light stability in PSC. On the other hand,
devices treated with NDI-(PhBr), displayed abrupt performance losses, mirroring trends observed
in the 72-hour CBD process. These findings further align with prior observations that anchoring
groups enhance molecular adhesion and durability with proper coverage, ultimately influencing

PSC longevity and performance.

The relationship between molecular coverage and interfacial properties was further
supported by CA measurements on FTO processed using the optimized 72-hour CBD process with
NDI-(PhPA), and NDI-(PhBr),. NDI-(PhPA), thin films exhibited a lower and more consistent
water contact angle (41.74° £ 0.33°) compared to NDI-(PhBr), (47.29° + 11.87°), indicating
superior wettability for perovskite precursor solutions (Fig. S27). The stronger coordination of the
phosphonic acid groups with the FTO surface results in a more uniform, hydrophilic interface
relative to FTO water contact angle of (55.20° + 1.89°). The larger variation in water contact angles
observed on NDI-(PhBr), treated FTO is likely a result of the CBD process itself, as NDI-(PhBr),

1s not retained on the FTO surface.



PSCs incorporating NDI-(PhPA), and NDI-(PhBr), without the EtOH dipping step (referred to as
“excess” conditions) were subjected to [ISOS-L-2I testing (Fig. S26) to understand the impact of
unbound molecules on perovskite phase stability as shown in our previous work with phosphonic
acids.* The maximum reverse scan PCEs were 13.57% (median 11.5%) for NDI-(PhPA), excess
and 12.77% (median 11.54%) for NDI-(PhBr), excess; full photovoltaic parameters are reported
in Figure S23 and Table S3. Unlike NDI-(PhPA), excess, the NDI-(PhBr), excess devices
exhibited further reductions in stabilized PCE, suggesting that residual NDI-(PhBr), molecules
disrupt the interfacial environment. However, under ISOS-L-2I thermal stress testing, NDI-
(PhPA), excess showed accelerated degradation, highlighting the detrimental impact of unbound

molecules, while NDI-(PhBr), excess devices were even less stable than without ETL devices.

XPS measurements were also conducted on NDI-(PhPA), excess and NDI-(PhBr), excess
thin films (Fig. S27). The P 2p spectrum of NDI-(PhPA), excess displayed an identical peak at
133.5 eV, consistent with that observed for the NDI-(PhPA), thin film. Nonetheless, NDI-(PhBr),
excess film showed two distinct Br 3d peaks appeared at 70.6 eV and 71.5 eV, features absent in
EtOH dipped samples. This indicates that, in the absence of the EtOH dip, residual NDI-(PhBr),
molecules remain on the surface and likely engage in different interactions with the FTO substrate.
Furthermore, N 1s signals at 400.8 eV were observed for both NDI-(PhPA), excess and NDI-
(PhBr), excess, with greater intensity for NDI-(PhPA), excess films, suggesting a higher degree

of molecular retention relative to NDI-(PhBr)s.

SEM analysis was performed to assess how PhPA and PhBr functional groups on NDI-

derivatives influence perovskite film morphology for the 24-hour CBD process (Fig. S28).
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Although it was initially hypothesized that the more hydrophilic surface provided by NDI-(PhPA),
could reduce perovskite grain sizes and increase grain boundary density, potentially contributing
to open-circuit voltage (Voc) losses®, SEM images revealed no significant differences in grain size
across perovskite films deposited on NDI-(PhPA),, NDI-(PhBr),, and their excess conditions. This
suggests that observed reduction in Vo is likely attributed to change in the work function of the
FTO induced by the presence of NDI-(PhPA), interlayer. To further probe structural impacts,
GIWAXS measurements were conducted on perovskite films deposited atop NDI-(PhPA), excess
and NDI-(PhBr), excess layers. The GIWAXS data also revealed no notable changes in crystalline
structure compared to perovskite films deposited on conventional ¢-TiO, + mp-TiO, layer,
indicating that the presence of excess molecules does not alter the crystalline structures of the
perovskite layer (Fig. S29). Moreover, cross-sectional SEM images of REF, w/o ETL, and 72-
hour CBD-processed NDI-(PhPA), PSCs showed comparable perovskite grain sizes across all

devices (Fig. S31).
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Figure S14. 3C NMR spectrum of NDI-(PhPA),.
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Figure S16. UV-Vis absorption spectra of NDI-based ETL (a) thin films and (b) solution in
DMSO. (c) Optical HOMO-LUMO gap determination of NDI-(PhPA), thin films using Tauc
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Figure S18. Surface chemistry analysis via deconvoluted XPS core level spectra of C 1s for (a)
bare FTO and NDI-(PhPA), on FTO with varying chemical durations (b) before and (c) after
DMF:DMSO (2:1) + CB wash test.
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Figure S19. Surface chemistry analysis via deconvoluted XPS core level spectra of C 1s for (a)
bare FTO and FTO treated with NDI-(PhBr), CBD with varying chemical durations (b) before and
(c) after DMF:DMSO (2:1) + CB wash test.
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Figure S21. Statistics of (a) Vo, (b) Jsc, (¢) FF, (d) PCE, (e) stabilized PCE, and (f) J-V curves
of champion devices for REF, w/o ETL, and NDI-(PhPA), with different chemical bath durations
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Table S1. Summarized photovoltaic parameters for PSCs incorporating REF, w/o ETL, and NDI-
(PhPA), with different chemical bath durations.

ETL Scan Voc N~ | o€ (mA cm-z) FF (%) PCE (%) | Stabilized PCE (%)
Rev. | 1.07 £0.02 24.56 £0.20 75.19+491 | 19.76 +1.34
REF 19.38 £1.20
Fwd. | 1.03£0.01 24.50+0.21 71.31+£5.08 | 18.01 +£1.20
Rev. | 0.96+0.07 20.77 £1.18 58.75+9.48 | 11.83 £2.59
w/o ETL 449 +£1.55
Fwd. | 0.77 £0.16 9.93+2.42 31.15+2.16 | 2.42+1.00
Rev. | 0.91 £0.03 23.31+£0.63 6638 +2.73 | 14.13 £1.08
NDI&%‘PA)z 9.79 +0.81
I Fwd. | 0.81 £0.02 18.44 £0.71 5031+1.68 | 7.50+0.52
Rev. | 0.90+0.02 23.09 £0.55 66.30+3.21 | 13.75+0.72
NDIA%IEPA)Z 10.07 + 0.48
T Fwd. | 0.78 £0.00 18.55 £ 0.49 53.56 +0.97 | 7.74+0.30
Rev. [ 0.85+0.04 | 22.11+1.49 57.03 +14.08 | 10.70 +2.86
NDI;%‘PA)z 7.83 £2.00
I Fwd. | 0.78 £0.02 17.28 £3.04 4546 +8.59 | 6.18+1.89
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Figure S22. Statistics of (a) Vo, (b) Jsc, (¢) FF, (d) PCE, (e) stabilized PCE, and (f) J-V curves
of champion devices for REF, w/o ETL, and NDI-(PhBr), with different chemical bath durations
incorporated PSCs. “REF” refers to c-TiO, + mp-TiO, and “w/o ETL” represents PSCs without

an ETL.
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Table S2. Summarized photovoltaic parameters for PSCs incorporating REF, w/o ETL, and NDI-
(PhBr), with different chemical bath durations.

ETL |Sean| Vo (V) |J _(mAcem™) | FF(%) | PCE (%) | Stabilized PCE (%)
Rev. | 1.06 +£0.02 | 25.36+0.24 77.01 £4.26 | 20.76 + 1.26
REF 19.76 + 1.45
Fwd. [ 0.99+£0.02 | 25.28=+0.24 67.27+£3.74 | 16.85+1.27
Rev. [ 0.95+0.15| 24.76+0.24 | 56.05+11.77 | 13.56 +4.32
w/o ETL 9.46 +2.30
Fwd. | 0.60+0.07 | 21.19+1.63 37.25+£5.01 | 476+0.84
NDIL(PhBr), | Rev- | 0.99+0.07 | 24.80+0.57 | 60.14+8.05 | 14.88+2.84 313 s 258
6Hr Fwd. | 0.84+0.08 | 22.28+1.27 46.77+£693 | 891+2.34
NDI(PhBr), | Rev- | 0.99:+0.04 | 24.08+1.03 | 5891474 | 14.16+ 1.83 .
I2Hr | pwd. [ 0.88+0.05 | 2185178 | 47.27+6.81 | 9.22+2.08
NDI(PhBr), | Rev- | 096+0.06 | 2448+ 1.15 | 5845894 | 13.86+2.84 1297 £ 2.40
24Hr | pud | 087006 | 2269+2.13 | 49.27+7.96 | 9.93+2.43
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Figure S23. Statistics of (a) Voc, (b) Jsc, (¢) FF, (d) PCE, (e) stabilized PCE, and (f) J-V curves
of champion devices for REF, w/o ETL, NDI-(PhPA), 24Hr, NDI-(PhPA), Excess, NDI-(PhBr),
24Hr, NDI-(PhBr), Excess incorporated PSCs. “REF” refers to c-TiO, + mp-TiO, and “w/o ETL”
represents PSCs without an ETL. “Excess” denotes NDI-based ETL molecules without EtOH

dipping step.
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Table S3. Summarized photovoltaic parameters for PSCs incorporating REF, w/o ETL, NDI-
(PhPA), 24Hr, NDI-(PhPA), Excess, NDI-(PhBr), 24Hr, NDI-(PhBr), Excess.

ETL Scan | V. (V) |J s (MA cm'z) FF (%) PCE (%) | Stabilized PCE (%)

Rev. | 1.04+0.02 | 2534+027 | 76.61+2.96 |20.17+0.90

REF 19.54+0.85
Fwd. | 0.98+0.00 | 2525+031 |72.49+3.23|17.98+0.93
Rev. | 0.97+0.07 | 24.99+037 | 61.02+7.59 | 14.96+2.62

w/o ETL 11.24 £1.85
Fwd. | 0.75+0.06 | 22.04+1.14 |3820+3.48 | 6.30%0.90

NDI-(PhPA), | Rev- [0.80£0.04 | 24.704£044 | 53.30+8.82 | 10.58+2.09 048 < 178
24Hr Fwd. | 0.75+0.05 | 21.97+086 |47.15+3.93 | 7.80=1.15

NDI-(PhPA), | Rev. [0.79£0.01 | 24.28+1.00 |57.84+9.28 | 11.08+1.88 0525210
Excess Fwd. | 0.77+0.01 | 22.12+2.10 |49.98+6.14 | 8.58+1.52

NDI-(PhBr), | Rev. | 0974007 | 23724073 | 53.69+8.12 | 125242381 L2 4234
24Hr Fwd. | 0812009 | 1926+1.85 |39.01+3.78 | 6.18+1.42

NDI-(PhBr), | Rev. | 0.94+0.02 | 22.22+0.57 |53.69+3.73 | 11.20+1.01 0165177
Excess Fwd. | 0.77+0.06 | 1541198 |[35.15+3.13 | 4.26+1.08
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Figure S24. Normalized stabilized PCE during long-term stability measurement of REF, w/o ETL,
NDI-(PhPA), 24Hr, and NDI-(PhBr), 24Hr. Photovoltaic parameters from J-V scans were
automatically extracted every 12 hours during the MPPT at 25 °C. “REF” refers to c-TiO, + mp-
TiO, and “w/o ETL” represents PSCs without an ETL.
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Time (Hr)

Figure S25. Evolution of the J-V parameters during long-term stability measurement of REF, w/o
ETL, NDI-(PhPA), 24Hr, NDI-(PhBr), 24Hr. Photovoltaic parameters from J-V scans were
automatically extracted every 12 hours during the MPPT at 25 °C. “REF” refers to c-TiO, + mp-
Ti0O, and “w/o ETL” represents PSCs without an ETL.
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Figure S26. Normalized stabilized PCE during long-term stability measurement of REF, w/o ETL,
NDI-(PhPA), Excess, and NDI-(PhBr), Excess. Photovoltaic parameters from J-J scans were
automatically extracted every 12 hours during the MPPT at 65 °C. “REF” refers to c-TiO, + mp-
Ti0O, and “w/o ETL” represents PSCs without an ETL.
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Figure S27. XPS spectra of (a) P 2p for NDI-(PhPA), Excess and (b) NDI-(PhBr), Excess on
FTO, before and after washing with DMF:DMSO (2:1) and CB solvents, simulating the perovskite
spin-coating conditions to assess molecular retention. (c) N 1s XPS spectra of NDI-(PhPA), Excess
and NDI-(PhBr), Excess on FTO. “Excess” denotes NDI-based ETL molecules without EtOH

dipping step.
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Figure S28. Top-view SEM of CsFA on ¢-TiO; + mp-TiO,, NDI-(PhPA), 24Hr, NDI-(PhPA),
Excess, NDI-(PhBr), 24Hr, and NDI-(PhBr), Excess thin films. No obvious changes in grain size
were found for NDI-based ETL molecules.
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Figure S29. GIWAXS patterns of CsFA spin-coated on top of (a) c-TiO, + mp-TiO,, (b) NDI-
(PhPA), Excess, and (c) NDI-(PhBr), Excess with incident angle of 0.5°.
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Figure S30. Water contact angle measurements on bare FTO, FTO treated with c-Ti0, + mp-TiO,,
NDI-(PhPA),, and NDI-(PhBr),, illustrating wettability differences.
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Figure S31. The cross-sectional SEM images of REF, w/o ETL, and NDI-(PhPA), 72Hr,
incorporated PSCs. “REF” refers to ¢-TiO, + mp-TiO, and “w/o ETL” represents PSCs without
an ETL.
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Figure S32. Statistics of (a) Vo, (b) Jsc, (¢) FF, (d) PCE, (e) stabilized PCE, and (f) J-V curves

of champion devices for REF, w/o ETL, NDI-(PhPA), 72Hr,

and NDI-(PhBr), 72Hr incorporated

PSCs. “REF” refers to ¢-TiO, + mp-TiO; and “w/o ETL” represents PSCs without an ETL.

Table S4. Summarized photovoltaic parameters for PSCs
(PhPA), 72Hr, and NDI-(PhBr), 72Hr.

incorporating REF, w/o ETL, NDI-

ETL Sean | Vo . (V) [J  (mA em?)| FF (%) | PCE (%) | Stabilized PCE (%)
Rev. | 1.02+£0.04 | 25124029 |77.65+3.66 | 19.87 131
REF 19.86 + 0.99
Fwd. | 0.98+£0.03 | 25.09+£029 |70.60+3.55|17.32+1.34
Rev. | 1.00£0.06 | 24.93+044 |59.71+7.00 | 15.05+2.51
w/o ETL 13.15+ 1.33
Fwd. | 0.77+£0.06 | 2224+084 |40.84=0.84| 7.00+0.93
NDL(PhPA), | Rev. | 0845003 | 24.60+£0.64 | 5827%9.68 | 12.03+229 02 a 201
72Hr Fwd. | 0.81£0.04 | 22.09+098 |4515+6.04 | 8.17+1.44
NDI(PhBr), | ReV- | 0.94£0.06 | 2378120 |58.19%5.56 | 13104238 s ase
72Hr Fwd. | 0.76+0.08 | 19.67+2.30 |4334+573| 6.73+2.17
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Figure S33. Evolution of the J-V parameters during long-term stability measurement of REF,
w/o ETL, NDI-(PhPA), 72Hr, NDI-(PhBr), 72Hr. Photovoltaic parameters from J-V scans were
automatically extracted every 12 hours during the MPPT at 25 °C. “REF” refers to c-TiO; + mp-
Ti0O, and “w/o ETL” represents PSCs without an ETL.
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Figure S34. Evolution of the J-V parameters during long-term stability measurement of REF, w/o
ETL, NDI-(PhPA), 72Hr, NDI-(PhBr), 72Hr. Photovoltaic parameters from J-V scans were
automatically extracted every 12 hours during the MPPT at 65 °C. “REF” refers to c-TiO, + mp-
Ti0O, and “w/o ETL” represents PSCs without an ETL.
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