Electronic Supplementary Material

Developing an Intelligent Data-Driven Framework for Organic

Photovoltaic Research

Yu Cui, a Wei Ma, a and Han Yan* a

^aState Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong

University; Xi'an 710049, P. R. China. E-mail: mseyanhan@mail.xjtu.edu.cn

Experimental:

Large language model and evaluation:

Large language model: This study employs three state-of-the-art open-source large language models (LLMs) to process textual content, tables and figures for information extraction: Qwen2.5-72B, Qwen2.5-VL-72B, and DeepSeek-V3. The Qwen2.5-72B and Qwen2.5-VL-72B (2024) models were developed by Tongyi Lab, part of Alibaba Group, as members of the Qwen series; DeepSeek-V3 was developed by DeepSeek. All three models are built upon the Transformer architecture and operate in an autoregressive manner for text generation. Specifically, Qwen2.5-72B and DeepSeek-V3 are unimodal language models, while Qwen2.5-VL-72B is a multimodal extension capable of joint understanding of figures and text. For experimental evaluation, we deployed these open-source models on cloud-based servers equipped with highperformance GPUs. Efficient inference was achieved using the Hugging Face Transformers library, and model integration with downstream tasks was implemented via custom **API** interfaces. Code is uploaded to GitHub (https://github.com/limitedcommunication/Data-extraction)

Evaluation of Text Mining: To evaluate the performance of LLMs in extracting parameters from OPV literature, precision, recall, and F1 score were primarily employed as the performance metrics, defined as follows:

Precision =
$$\frac{TP}{TP+FP}$$

Recall = $\frac{TP}{TP+FN}$

F1 = $\frac{2 \times Precision \times Recall}{Precision+Recall}$

In the text mining task for OPV design parameters, each extracted parameter was classified into one of the following three labels: TP (accurately extracted parameter), FP (incorrectly extracted parameter or irrelevant information extracted), or FN (parameter not successfully extracted). The precision metric measured the accuracy of the method in extracting OPV parameters, the recall metric assessed the completeness of the method in extracting OPV parameters, and the F1 score, which was calculated

based on precision and recall, served as an overall representation of the method's performance.

Calculation platform construction and molecular parser:

Molecular Parser: The molecular parser utilizes the DECIMER (version 2.7.1) opensource platform, which leverages cutting-edge advances in deep learning, computer vision, and natural language processing to automatically segment, classify, and translate chemical structure depictions from printed literature. This platform enables seamless conversion of molecular structure images in PDF documents into SMILES strings.

In our study, DECIMER was employed exclusively to interpret chemical structure diagrams of Y-series NFAs and convert them into machine-readable SMILES representations. Applied to the 125 molecules in our dataset, DECIMER successfully generated chemically valid and accurate SMILES strings for 110 molecules (88%). The remaining 15 molecules (12%) featured low-resolution or ambiguous structural diagrams, which led to incorrect SMILES outputs—most commonly misassigned alkyl side chains. For these cases, expert chemists manually reviewed the original publications and corrected the SMILES strings to ensure chemical fidelity. This resulted in a manual curation rate of 12%, which reflects the current limitations of automated chemical image recognition in real-world scientific literature but also underscores the necessity of domain expertise in high-stakes data curation.

High-Throughput Quantum Chemistry Computation Platform (HQCCP):

- (1) A molecular processing pipeline was constructed using the RDKit (version 2025.3.3) cheminformatics toolkit, supporting automated conversion and standardization of multiple molecular input formats including SMILES, SDF, and XYZ.
- (2) Implementation of tiered computational strategy:
- (a) Primary screening: GFN2-xTBsemi-empirical method on clusters using xTB.^{1,2}
 - (b) Secondary refinement: Geometry optimization using ORCA 5.0 with B3LYP

functional and def2-SVP basis set, employing TIGHTSCF integration accuracy

keywords.3-7

(c) Tertiary high-accuracy calculation: Single-point energy correction for selected

candidates at the same level of theory, accelerated via RIJCOSX approximation.⁸

(3) Computational task management system:

Automated scheduling framework developed in Python 3.9. Independent monitoring

threads for each job to track convergence status and errors in .out files. Automatic

adjustment of convergence thresholds or damping algorithms for SCF failures. Three-

level retry mechanism with automatic logging of problematic molecules after maximum

attempts

(4) Data acquisition and processing workflow:

Molecular descriptors calculated using Multiwfn 3.8(dev).9 Multithreaded result parser

based on cclib extracts 50 molecule descriptors. Results stored in standardized CSV

format.

This platform achieves standardized computational workflows, intelligent task

management, and systematic data analysis through the above technical approaches.

Code is uploaded to GitHub (https://github.com/limitedcommunication/HQCCP)

Machine learning tools:

XGBoost (eXtreme Gradient Boosting) is a powerful ensemble machine learning

algorithm widely used for regression and classification tasks due to its efficiency,

scalability, and performance. It is based on gradient boosting frameworks that

sequentially build decision trees, where each subsequent tree aims to correct the errors

of the previous ones. In this study, we employed the XGBoost algorithm (XGBoost

Python package, version 2.0.0) to predict OPV device performance from molecular

descriptors. XGBoost introduces several improvements over traditional gradient

boosting, including L1/L2 regularization to prevent overfitting, built-in handling of

missing values, and support for parallel processing to accelerate training.

Hyperparameter ranges and types used in our research:

learning rate: [0.01, 0.05, 0.1, 0.2]

max_depth: [3, 4, 5, 6, 7]

n_estimators: [100, 200, 300, 500]

subsample: [0.8, 0.9, 1.0]

colsample_bytree: [0.8, 0.9, 1.0]

gamma: [0, 0.1, 0.2, 0.5]

The best-performing combination (selected based on mean validation r² across the 5 folds) was: learning_rate=0.05, max_depth=5, n_estimators=300, subsample=0.9, colsample bytree=0.9, gamma=0.1.

Valiadation: To validate the accuracy and generalisability of the machine learning model, we computed 27 molecular descriptors for L8-BO-X and input them into the pre-trained model, ultimately yielding a predicted PCE of 17.55%. The codes and documents were available on GitHub (https://github.com/limitedcommunication/L8-BO-X_validation).

SHapley Additive exPlanations (SHAP) is a unified and interpretable game theorybased framework for explaining the output of any machine learning model. It assigns each feature an importance value for a particular prediction, reflecting its contribution to the model's decision. SHAP values are derived from Shapley values in cooperative game theory, ensuring fair attribution of feature contributions by considering all possible feature combinations. In this study, SHAP (version 0.42.1) was applied post hoc to the trained XGBoost model to quantify the impact of individual molecular descriptors on predicted OPV device performance. This approach not only enabled global interpretation of feature importance across the entire dataset but also facilitated local explanation of individual predictions, revealing how specific molecular characteristics influence device efficiency under different structural contexts. By integrating SHAP with ECFP-based fragment analysis, we further decoded structureproperty relationships at the submolecular level, supporting rational molecular design strategies. The codes were available on GitHub (https://github.com/limitedcommunication/OPV analyzer).

Extended Connectivity Fingerprints (ECFP) are a class of circular topological molecular fingerprints widely used in cheminformatics and machine learning

applications for drug discovery and materials science. ECFP encodes the local atomic environment around each atom in a molecule by iteratively considering increasing layers of neighboring atoms up to a specified diameter. Calculation steps:

(1) Initialize Atom Identifiers.

Generate initial identifiers for each atom in the molecule using a set of basic atomic properties, typically including atom type, hybridization state, formal charge, etc.

(2) Iterative Atomic Environment Expansion.

Starting from the target atom, iteratively expand the atomic environment outward based on a defined radius, collecting information about surrounding atoms and bonds (Figure S10).

- 1. Iteration 0 (Initial Atom Identifier): The identifier represents only Atom 1 and its directly bonded atoms (smallest circle).
- 2. Iteration 1: The identifier now includes information about Atom 1's immediate neighboring atoms (intermediate circle).
- 3. Iteration 2: The substructure further expands, covering most of the terminal group (largest circle).

(3) Hashing (Fingerprint Encoding).

To compress these complex structural identifiers into a fixed-length fingerprint, apply a hashing function to each substructure identifier. Each hash value corresponds to a specific position (bit or feature) in the fingerprint vector.

(4) Generate Final Fingerprint.

Based on the hashing results, set the value of each bit/feature to 0 (absent) or 1 (present) to indicate the occurrence of a given substructure.

In this study, ECFP fingerprints were generated using the RDKit package (version 2022.09.5), we set radius to 2 and nBits to 1024 and employed alongside quantum chemistry-derived molecular descriptors to enhance model interpretability and uncover fragment-level insights into molecular design principles influencing OPV performance.

Figures:

Fig. S1. An example of using the open-source multimodal LLM Qwen2.5-VL-72B to extract abstract and other information from a screenshot image of scientific literature.

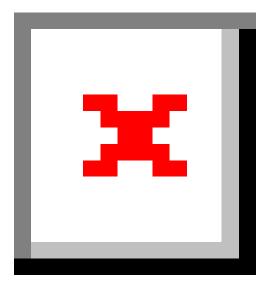


Fig. S2. An example of using the open-source LLM DeepSeek-V3 to classify scientific literature based on extracted abstracts.

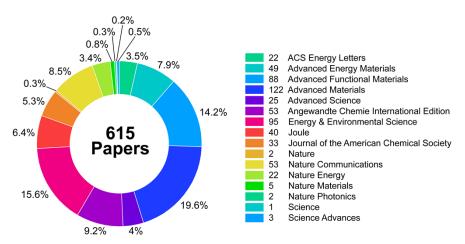


Fig. S3. Distribution of the academic journals of the literatures used in this study.

```
Material Pairs Extraction Task Prompt:
                                                                                               Processing Conditional Extraction Task Prompt:
                                                                                               Task Objective 
Extract the corresponding processing conditions for the following
Task Objective:
Extract the corresponding material combinations for the following
PV performance conditions
                                                                                               PV performance conditions
{performance_conditions}
Extraction rules
                                                                                               {performance_conditions}
                                                                                               Extraction rules
                                                                                               Range of processing conditions - Core parameters:
Combination type definition
 Structure: 1 donor (D1) + 1 acceptor (A1).
Example: `D1/A1`.
                                                                                                - Solvent
- Device structure
                                                                                                - Processing method (spin coating/scratch coating/R2R, etc.) - Heat treatment conditions - Effective area

    Ternary

  Structure
  - 2 donor(D1/D2) + 1 acceptor(A1)
 - 1-donor(D1) + 2-acceptor(A1/A2)
Multi-component
                                                                                               - Film thickness
Extraction Logic
 Number of components: >3
Single-component(single-component)

    **Explicit conditions
    Explicitly mentioned in the literature

                                                                                                                                                      extract specific values

    Not explicitly mentioned → marked 'null'.

   Donor-acceptor copolymer (e.g. `PM6-b-PYIT`)
                                                                                               2. Relevance judgement
                                                                                                 - Verify device structure consistency

    Pure donor/pure acceptor material

Property requirements
- Donor-acceptor ratio

Verify that the effective area is the same
Check solvent usage

 Mark 'null' if unspecified 
Additives

    Verify film thickness parameters
    Repeat condition processing

 Includes: liquid/solid additives, organic dopants
                                                                                                 Identical conditions need to be output independently to each
  Mark 'not mentioned' if unspecified
                                                                                                 corresponding condition

    Extraction range
    Coverage: text/tables/footnotes
    Experimental condition discrimination

                                                                                               Data source
                                                                                               Coverage: All content in text/tables/footnotes etc.
Output in JSON format only, without adding any additional
                                                                                               comments, symbols or explanations
Output format:
 Include: same material combinations, but different experimental
  conditions are classified as different condition_ids
- Output format:
  - Output in JSON format with material combination type, donor and
   acceptor material name
                                                                                                    "condition_id": "perf_01",
"processing_conditions": {
  "structure": "device structure",
  "solvent": "solvent",
  "" ""
Output in JSON format only, without any additional comments, symbols, or explanations.
Output format:
                                                                                                      "processing method": "processing method", "thermal annealing": "thermal annealing", "active area": "active area",
  'conditions": [
     "film_thickness": "thickness"
       'additives': ['Additives 1']
```

Fig. S4. Prompts for driving DeepSeek-V3 to extract material pairs and processing conditions.

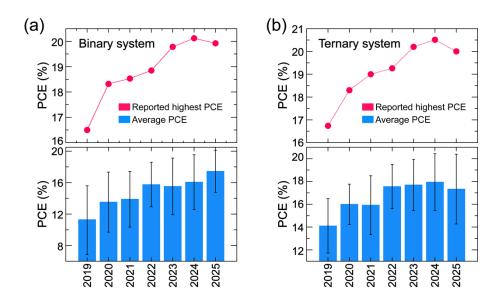


Fig. S5. From 2019 to 2025, (a) changes in the distribution of reported maximum and average PCE for binary systems; (b) changes in the distribution of reported maximum and average PCE for ternary systems.

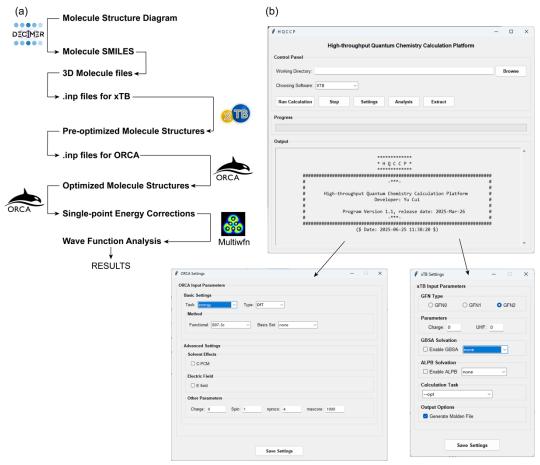


Fig. S6. (a) Workflow of the HQCCP. (b) Main work panel of the HQCCP with ORCA and xTB software calculation setup page.

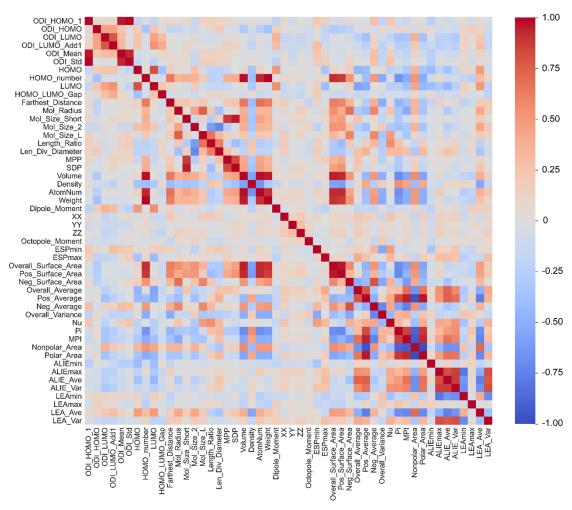


Fig. S7. Pearson correlation heat map of 50 molecular descriptors.

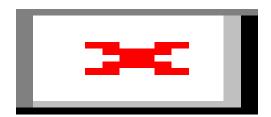


Fig. S8. PCE distribution of devices derived from 125 Y-series acceptors.

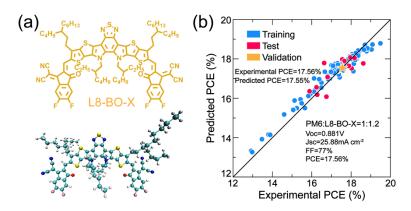


Fig. S9. (a) Chemical structure of L8-BO-X, including its chemical formula and DFT-optimized 3D conformation. (b) Scatter plot comparing experimental PCE versus predicted PCE for the training set (blue), test set (red), and validation set (yellow) of the XGBoost model. The diagonal line represents perfect prediction. The yellow star highlights the prediction for L8-BO-X, which achieves an experimental PCE of 17.56% and a predicted PCE of 17.55%.

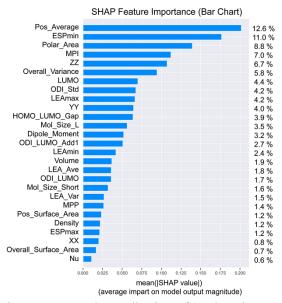


Fig. S10. SHAP feature importance and contribution of 27 descriptors obtained by explainable ML.

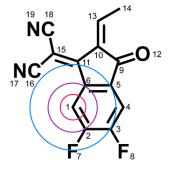


Fig. S11. Schematic diagram of the ECFP fingerprint perception radius. As an example, atom 1 in the terminal group of the Y-series acceptor molecule in the picture is the target atom. Where the red, purple, and blue circles represent different ranges of iterative atomic environment expansion, respectively. See calculation details in Method.

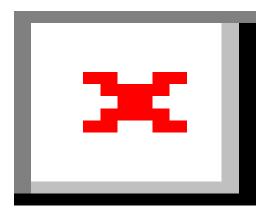


Fig. S12. Predicted (a) Pos_Average, (b) ESP_{min}, (c) Polar_Area, (d) MPI, and (e) ZZ by machine learning versus calculated results. SHAP feature importance and contribution of (f) Pos_Average, (g) ESPmin, (h) Polar_Area, (i) MPI, and (j) ZZ obtained by explainable ML. Illustration of features contributing to (k) Pos_Average, (i) ESPmin, (m) Polar_Area, (n) MPI and, (o) ZZ by SHAP values of different molecular substructures.

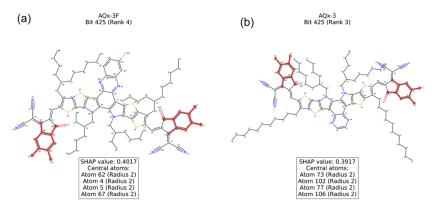


Fig. S13. Visualization of the atomic environment corresponding to ECFP bit 425, which exhibits a strong positive association with PCE. The red-highlighted atoms and bonds represent the substructure activated by this bit. (a) In molecule AQx-3F (Rank 4), the bit is activated by central atoms 62, 4, 5, and 67, yielding a SHAP value of +0.4017. (b) In molecule AQx-3 (Rank 3), the bit is activated by central atoms 73, 102, 77, and 106, yielding a SHAP value of +0.3917. This demonstrates that the same ECFP bit consistently identifies the ortho-fluorinated phenyl ring motif across different Y-series acceptors, confirming its role as a key structural feature for high performance.

Tables:

Table S1. Comparison table of 32 parameters abbreviations and full names.

Number	Parameter abbreviation	Full name of parameter	
1	material_type	Material Type (binary or ternary etc.)	
2	donors	Donor Materials	
3	acceptors	Acceptor Materials	
4	DA_ratio	Donor-Acceptor Ratio	
5	additives	Additives	
6	structure	Device Structure	
7	solvent	Solvent	
8	processing_method	Processing Method (spin-coating etc.)	
9	thermal_annealing	Thermal Annealing (temperature and time)	
10	active_area	Active Area	
11	film_thickness	Active Layer Film Thickness	
12	Voc_best	Best Open-Circuit Voltage	
13	Voc_avg	Average Open-Circuit Voltage	
14	Voc_std	Standard Deviation of Open-Circuit Voltage	
15	Voc_unit	Unit of Open-Circuit Voltage	
16	Jsc_best	Best Short-Circuit Current Density	
17	Jsc_avg	Average Short-Circuit Current Density	
18	Jsc_std	Standard Deviation of Short-Circuit Current Density	
19	Jsc_unit	Unit of Short-Circuit Current Density	
20	FF_best	Best Fill Factor	
21	FF_avg	Average Fill Factor	
22	FF_std	Standard Deviation of Fill Factor	
23	FF_unit	Unit of Fill Factor	
24	PCE_best	Best Power Conversion Efficiency	
25	PCE_avg	Average Power Conversion Efficiency	
26	PCE_std	Standard Deviation of Power Conversion Efficiency	
27	PCE_unit	Unit of Power Conversion Efficiency	
28	certified_status	Certified Status	
29	certifying_body	Certifying Body	
30	light_spectrum	Light Spectrum	
31	light_intensity_value	Light Intensity Value	
32	light_intensity_unit	Light Intensity Unit	

Table S2. Summary of 50 descriptor abbreviations and full names, and 27 were selected after screening. An asterisk (*) indicates a descriptor included in the final selected set.

Number	Categories	Sub- Categories	Descriptor	Full name of descriptor
1			НОМО	Highest Occupied Molecular Orbital
2		Frontier Orbital Energy Levels	HOMO_number	HOMO Number
3	Frontier Orbitals	8,	LUMO*	Lowest Unoccupied Molecular Orbital
4		Energy Gap Metric	HOMO_LUMO_Gap*	HOMO-LUMO Gap
5		Frontier Orbital- Specific	ODI_HOMO_1	Orbital Delocalization Index HOMO-1
6		Delocalization	ODI_HOMO	Orbital Delocalization Index HOMO
7	Orbital	Indices	ODI_LUMO*	Orbital Delocalization Index LUMO
8	Delocalization		ODI_LUMO_Add1*	Orbital Delocalization Index LUMO+1
9		Statistical	ODI_Mean	Orbital Delocalization Index Mean
10		Summaries of Orbital Delocalization	ODI_Std*	Orbital Delocalization Index Standard Deviation
11			Farthest_Distance	Farthest Distance between Atoms
12			Mol_Radius	Molecular Radius
13			Mol_Size_Short*	Shortest Molecular Size
14		Global Size & Spatial Extent	Mol_Size_2	Medium Molecular Size
15		1	Mol_Size_L*	Longest Molecular Size
	M 1 1		MPP*	Molecular Planarity Parameter
	Molecular		SDP	Span of Deviation from Plane
16	Geometry	Molecular Shape Anisotropy	Length_Ratio	Length Ratio
17			Len_Div_Diameter	Length Divided by Diameter
20			Volume*	Molecular Volume
21		Mass & Density	Density*	Molecular Density
22		Properties	AtomNum	Atom Numbers
23			Weight	Molecule Weight
24			Dipole_Moment*	Dipole Moment
25			XX*	Quadrupole Moment XX direction
26		Multipole Moments	YY*	Quadrupole Moment YY direction
27		TVIOINGING	ZZ*	Quadrupole Moment XX direction
28			Octopole_Moment	Octopole Moment
29		Electrostatic	ESPmin*	Minimum Electrostatic Potential
30		Potential Extremes	ESPmax*	Maximum Electrostatic Potential
31	Electrostatics &		Overall_Surface_Area*	Overall Surface Area
32	Polarity		Pos_Surface_Area*	Positive Surface Area
33			Neg_Surface_Area	Negative Surface Area
34		Partitioned	Overall_Average	Average Overall Electrostatic Potential
35		Molecular Surface Statistics	Pos_Average*	Average Positive Electrostatic Potential
36		Statistics	Neg_Average	Average Negative Electrostatic Potential
37			Overall_Variance*	Variance of Overall Electrostatic Potential
			Nonpolar_Area	Nonpolar Area

			Polar_Area*	Polar Area
38			Nu*	Electrophilicity Index
39		Integrated Polarity Indices	Pi	Nucleophilicity Index
40			MPI*	Molecular Polarizability Index
43			ALIEmin	Minimum Averaged Local Ionization Energy
44			ALIEmax	Maximum Averaged Local Ionization Energy
45		Averaged Local Ionization Energy	ALIE_Ave	Averaged Local Ionization Energy Average
46	Reactivity Indices		ALIE_Var	Averaged Local Ionization Energy Variance
47			ALIEmin*	Minimum Local Electron Affinity
48			LEAmax*	Maximum Local Electron Affinity
49		Local Electron Affinity	LEA_Ave*	Local Electron Affinity Average
50			LEA_Var*	Local Electron Affinity Variance

Table S3. Names and corresponding literature DOIs for the 125 selected Y-series acceptor molecules.

Number	Acceptor	DOI
1	BTP-BO-TBO	10.1038/s41467-025-56799-6
2	BTP-C11	10.1002/aenm.202100079
3	BTP-ClBr1	10.1002/aenm.202002649
4	BTP-DBO	10.1038/s41467-025-56799-6
5	BTP-DC11	10.1038/s41467-025-56799-6
6	BTP-DTBO	10.1038/s41467-025-56799-6
7	ВТР-Н2	10.1039/d2ee00595f
8	BTP-S10	10.1002/aenm.202201076
9	BTP-SA1	10.1002/advs.202405303
10	BTP-T	10.1002/adfm.202409723
11	С9ВО	10.1002/aenm.202403121
12	CB-2Se	10.1002/adfm.202419176
13	diDT-BO	10.1002/adfm.202410786
14	DM-F	10.1002/ange.202407007
15	DTC8	10.1038/s41467-025-56225-x
16	A-SSe-TCF	10.1021/jacs.5c00004
17	A-WSSe-Cl	10.1002/anie.202104766
18	AQx-0F	10.1016/j.joule.2024.01.005
19	AQx-1F	10.1016/j.joule.2024.01.005
20	AQx-1	10.1002/adma.201906324
21	AQx-2F	10.1016/j.joule.2024.01.005
22	AQx-2	10.1002/adma.201906324
23	AQx-3F	10.1016/j.joule.2024.01.005
24	BP4T-4F	10.1002/aenm.202003177
25	BPF-4F	10.1021/acsenergylett.0c01688
26	BPS-4F	10.1021/acsenergylett.0c01688
27	BPT-4F	10.1021/acsenergylett.0c01688

28	BT-BO-L4F	10.1021/jacs.1c00211.s001
29	BT-LIC	10.1021/jacs.1c00211.s001
30	BTIC-CF3-γ	10.1016/j.joule.2020.02.004
31	BTP-2F-ThCl	10.1016/j.joule.2020.03.023
32	BTP-2ThCl	10.1016/j.joule.2020.03.023
33	BTP-4F-12	10.1002/adma.201903441
34	BTP-4F-P2EH	10.1002/aenm.202102596
35	BTP-Bme	10.1002/anie.202406153
36	BTP-ClBr2	10.1002/aenm.202002649
37	BTP-ClBr	10.1002/aenm.202002649
38	BTP-eC11	10.1002/adma.201908205
39	BTP-eC7	10.1002/adma.201908205
40	BTP-eC9	10.1002/adma.201908205
41	BTP-PhC6	10.1039/d2ee01848a
42	BTP-S1	10.1002/adma.202001160
43	BTP-S2	10.1002/adma.202001160
44	BTP-S7	10.1038/s41467-021-24937-5
45	BTP-S8	10.1038/s41467-021-24937-5
46	BTP-S9	10.1038/s41467-021-24937-5
47	BTP1O-4Cl-C10	10.1002/aenm.202003777
48	BTP1O-4Cl-C12	10.1002/aenm.202003777
49	BTP1O-4C1-C8	10.1002/aenm.202003777
50	DTY6	10.1016/j.joule.2020.07.028
51	EHBzS-4F	10.1021/acsenergylett.0c02230.s001
52	L8-BO	10.1038/s41560-021-00820-x
53	L8-HD	10.1038/s41560-021-00820-x
54	L8-OD	10.1038/s41560-021-00820-x
55	L8-ThCl	10.1038/s41467-024-51359-w
56	m-BTP-PhC6	10.1021/acsenergylett.2c01364
57	mBzS-4F	10.1021/acsenergylett.0c02230.s001
58	N-C11	10.1016/j.joule.2019.09.010
59	N3-C1-1	10.1039/d0ee02251a
60	N3-C1-2	10.1039/d0ee02251a
61	N3	10.1039/d4ee01944j
62	o-BTP-PhC6	10.1039/d0ee03506h
63	SY2	10.1002/adfm.202000456
64	Y18	10.1039/d0ee00862a
65	Y6-1O	10.1002/aenm.202003141
66	Y6	10.1016/j.joule.2019.01.004
67	Z8	10.1038/s41560-024-01557-z
68	2BO	10.1002/aenm.202403121
69	6C-2F	10.1039/d4ee02841d
70	7C-2F	10.1039/d4ee02841d
71	A-SSe-LSF	10.1021/jacs.5c00004

72	A-SSe-4F	10.1021/jacs.5c00004	
73	AA-1	10.1002/adma.202408858	
74	AA-2	10.1002/adma.202408858	
75	AQx-8	10.1002/aenm.202401561	
76	ATIC-C11	10.1002/adma.202413270	
77	B6Cl	10.1021/jacs.4c01503.s001	
78	BO4Cl	10.1021/acsenergylett.4c03168.s001	
79	BTA-C6	10.1038/s41467-024-55375-8	
30	BTA-E3	10.1038/s41467-024-55375-8	
31	BTA-E6	10.1038/s41467-024-55375-8	
32	BTA-E9	10.1038/s41467-024-55375-8	
33	BTA-HD-Rh	10.1002/advs.202404997	
34	BTIC-CF3-m	10.1016/j.joule.2020.02.004	
35	BTIC-CI-m	10.1016/j.joule.2020.02.004	
36	BTIC-F-m	10.1016/j.joule.2020.02.004	
37	BTP-2T	10.1002/adfm.202409723	
38	BTP-4F-P3EH	10.1002/aenm.202102596	
39	BTP-4F-PC6	10.1002/aenm.202102596	
90	BTP-4F	10.1038/s41467-019-10351-5	
91	BTP-Biso	10.1002/anie.202406153	
92	BTP-BO-TBO	10.1038/s41467-025-56799-6	
93	BTP-Cy	10.1002/adma.202418353	
94	BTP-eC9-4F	10.1002/adfm.202417478	
95	BTP-OS	10.1002/adfm.202415499	
96	BTP-PhC6-C11	10.1039/d2ee01848a	
97	BTP-Ph	10.1002/aenm.202100079	
98	BTP-T-BO	10.1002/aenm.2021000/9 10.1002/adfm.202409723	
99	BTP2O-4C1-C12	10.1002/aenm.202003777	
00	C5-16	10.1002/adfm.202408340	
01	CB-Se	10.1002/adfm.202419176	
02	DTC11-BO	10.1002/adfm.202410786	
03	eC9-2Cl	10.1002/adm.202410786 10.1002/adma.202102420	
04	eC9	10.1002/adma.202102420 10.1016/j.joule.2024.03.013	
05	K2	10.1016/J.jouie.2024.03.013 10.1002/adfm.202405168	
06	L8-BO-C4	10.1002/adfm.202405168 10.1038/s41563-024-02087-5	
07	Qx-p-N4F	10.1038/s41363-024-02087-3 10.1002/aenm.202403806	
08	SY1	10.1002/acfmi.202403600	
09	TPT10	10.1002/admi.202000430	
10	Y-BO-FCl	10.1021/Jacs.2009232.5001 10.1039/d1ee01832a	
11	Y-BO-FC1 Y2CF3		
		10.1021/jacs.4c13471.s001	
12	Y7-BO	10.1002/adfm.202200807	
13	AQx-22	10.1002/adma.202413376 10.1002/adfm.202413259	
14 15	PzIC-SeSe-4F SMA	10.1002/adim.202413259 10.1002/adma.202406690	

116	BTP-B	10.1002/adma.202418353
117	AQx-21	10.1002/adma.202413376
118	Y1	10.1002/adma.201904215
119	Y2	10.1038/s41467-019-08386-9
120	Y5	10.1002/adma.201807577
121	8C-2F	10.1039/d4ee02841d
122	BT-L4F	10.1021/jacs.1c00211.s001
123	AQx-4F	10.1016/j.joule.2024.01.005
124	BTP-SA2	10.1002/advs.202405303
125	BTP-SA3	10.1002/advs.202405303

Table S4. The contribution of different molecular substructures to the five descriptors and PCE obtained from SHAP analysis.

Descriptors	Substructures	Substructures' contribution to descriptor	Substructures' weighted contribution to PCE
D	Terminal-group	41.0%	5.17%
Pos_average	Central A' unit	33.2%	-4.2%
	Terminal-group	24.9%	2.74%
ESPmin	D unit	16.4%	1.81%
	Central A' unit	33.8%	-3.71%
D 1	Terminal-group	24.2%	2.13%
Polar_area	D unit	20.6%	-1.81%
MDI	Terminal-group	32.0%	2.24%
MPI	D unit	15.0%	-1.05%
	Side-chain	39.7%	2.65%
77	Central A' unit	11.8%	-0.79%
ZZ	D unit	17.3%	1.16%
	Terminal-group	15.1%	-1.01%

References

- 1. C. Bannwarth, S. Ehlert and S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652-1671.
- 2. E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys. 2017, 147, 034112.
- 3. F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
- 4. F. Neese, WIREs Computational Molecular Science 2022, 12.
- 5. A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- 6. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B Condens. Matter.* 1988, **37**, 785-789.
- 7. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305.
- 8. G. Knizia, W. Li, S. Simon and H. J. Werner, *J. Chem. Theory Comput.* 2011, 7, 2387-2398.
- 9. T. Lu and F. Chen, J. Comput. Chem. 2012, 33, 580-592.