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Figure S1. The Vo and FF for the single-junction SHJ solar cells used in tandem solar cells
shown in Figure 1. The spread of the parameters originates from process-related variability,

mainly due to minor non-uniformities during thin-film depositions.
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Figure S2. Photographs of perovskite thin films deposited on silicon bottom cells based on 15-
nm-thick and 25-nm-thick (n)nc-Si:H layers. There are pinhole formation and film defects on

the sample based on 15-nm-thick (n)nc-Si:H layer.
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Figure S3. The schematics and SEM micrographs (with top and bottom rows displaying top
views and cross-sectional views, respectively) of (i)a-Si:H-coated (6-nm-thick) textured c-Si
samples with varied thicknesses of (n)nc-Si:H layers A without and B with 10 nm ITO layers.
The thicknesses indicated in the figures are estimated based on the measured deposition rate
on co-deposited flat samples. The addition of a 10-nm-thick ITO layer on top of the (n)nc-Si:H
layers resulted in a more apparent surface nanoroughness across all samples. The thin ITO
layer resulted in densely packed, fine-grained nanostructures presumably related to its

crystalline structure.!?
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Figure S4. A The activation energy (E,), dark conductivity (o4) and B Raman spectra and
crystalline fraction (F¢) of (n)nc-Si:H layers with varied thicknesses deposited on (7)a-Si:H-
coated (10-nm-thick) glass substrates. Note, as the green laser (4j,sr = 514 nm) has a penetration
depth of a few hundred nanometers in the studied (n)nc-Si:H layers, their crystalline fraction
is underestimated due to non-negligible signals from the 10-nm-thick (7)a-Si:H layer

underneath.
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Figure S5. The optical constants of (n)nc-Si:H layers with A varied thicknesses and B 15-nm-
thick layers with different PT durations. In A, the optical constants of 6-nm-thick (n)a-Si:H are
added for comparisons. All samples feature 10-nm-thick (7)a-Si:H layers underneath the (n)nc-
Si:H layers to extract device-relevant layer properties. The (n)nc-Si:H layers show lower
absorption at shorter wavelengths and higher absorption at longer wavelengths compared with
the (n)a-Si:H layer. This behavior arises from the coexistence of amorphous and
nanocrystalline phases in (n)nc-Si:H layers, which shifts absorption toward longer wavelengths
and is further influenced by increased crystallinity and doping, achieved through increased film
thickness or by applying the plasma treatment before their depositions.>”” Overall, more
crystallized nc-Si:H layers exhibit reduced short-wavelength absorption and enhanced long-

wavelength absorption.



A 80 r r . T B
324 4 W e,
. 78 - & >
£ ™
+ . . o A
76 - < 45 \
=301 . I . = \
T b = «(
~ - L= 1
- e oo e
& + w S 10
284 * 1 a
724 . 4‘.:. 15 nm
L 5| 30 nm |
56 704 5 50 nm
1 [s]
70 nm a
- : . : 68 : E ; ; 0 . ‘ i
15 30 50 70 15 30 50 70 0.0 0.5 10 15 2.0
(n)nc-SizH thickness (nm) (n)ne-SizH thickness (nm) Voltage (V)
oltage
1980 T T T T T T
1.0 —————T———r———
2104 I c =
1960 . 1 ol | 084, / | N
&~ o e W\
— iy W\~ [70nm
> . E g N 4
20.6 4 oz 0.6 \  ‘415nm
E 1940 1< ) bt
g £ - 1
o . p + :g{ 2044 - ] g 0.4 Perovskite Silicon “.'(I ]
. o 15 nm (njnc-SitH |
1920 A 1 70 nm (n)ne-Si:H “3‘.
202 1 0.2 |
1500 L, : ‘ ‘ 2001 — : . : - Pl \
15 30 50 70 15 30 50 70 : : . . y
" " Y " 400 600 800 1000 1200
(n)nc-Si:H thickness (nm) (n)nc-Si:H thickness (nm)
Wavelength (nm)

Figure S6. A The J-V parameters of tandem solar cells featuring (n)nc-Si:H with varied
thicknesses, B the J-V characteristic of the best devices for each (n)-layer, and C the EQE and
1 - R (reflectance) spectra of tandem solar cells featuring 15-nm-thick and 70-nm-thick (n)nc-

Si:H layers.
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Figure S7. The SEM micrographs of textured c-Si wafers and c¢-Si samples with (7)/(n)a-Si:H
(6 nm/6 nm) layer stack A without and B with 10-nm-thick ITO. The top and bottom rows

display the top and cross-sectional views, respectively.
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Figure S8. The AFM images (top and bottom rows displaying 2D and 3D images,
respectively) of textured c-Si samples with different layer stacks: A 15-nm-thick (n)nc-
Si:H + 2-nm-thick (n)a-Si:H layers with different durations of plasma treatment (PT)
applied prior to the deposition of (7)nc-Si:H layers; B varied thicknesses of (n)nc-Si:H
layers without plasma treatment applied before their depositions; C bare c-Si wafer and c-
Si wafer with (i)/(n)a-Si:H layers and D 15-nm-thick (n)nc-Si:H + 2-nm-thick (n)a-Si:H
layers, with 30-second-long PT applied before deposition of the (n)nc-Si:H layers, without



and with a 10-nm-thick ITO layer. Note all samples in figures A, B and D feature 6-nm-
thick (7)a-Si:H layers underneath the (n)-layers (stacks). It is worth noting that roughness
quantification and accurate nanoscale information were limited by the dominant pyramidal
texture of c-Si wafers, cantilever-facet angle mismatches, and measurement artefacts that
prevented reliable capture of fine surface features. Although flat substrates would allow
more accurate AFM quantification, they would not fully reflect real device-relevant
surfaces. Future work will explore the use of high-aspect-ratio cantilevers, together with
leveraging the pyramid facets as reference planes, to enable reliable RMS nanoroughness

quantification of layers (stacks) deposited on textured c-Si wafers.
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Figure S9. The SEM micrographs of (i)a-Si:H-coated (6-nm-thick) textured c-Si samples with

A varied thicknesses of bilayer (p)-layer stacks (5-nm-thick (p)nc-SiO,:H layers together with

changing thicknesses of (p)nc-Si:H layers) without plasma treatment and C different durations

of plasma treatment on ~33 nm (p)-layer stacks. The top and bottom rows display top views

and cross-sectional views, respectively. B, D The measured activation energy (F,), dark

conductivity (g4) and Raman spectra of (p)-layer stack with varied conditions are also

presented. The (p)-layer stack thickness for the PT series to extract £, and oy is around 55 nm.

The deposition conditions and material properties of the bilayer (p)-layer stacks are reported in

a previous publication.?
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Figure S10. The SEM micrographs of (i)a-Si:H-coated (6-nm-thick) textured c-Si samples
with A varied thicknesses of (n7)nc-SiO,:H-1 layers without plasma treatment and C different
durations of plasma treatment on ~21-nm-thick (n)nc-SiO,:H-1 layers. The top and bottom
rows display top views and cross-sectional views, respectively. B, D The measured activation
energy (E,), dark conductivity (64) and Raman spectra of (n)nc-SiO,:H-1 layers with varied
conditions are also presented. The (n)nc-SiO,:H-1 layer thickness for the PT series to extract
E, and o4 is around 35 nm. The deposition conditions and material properties of the (n)nc-

SiO,:H-1 are reported in a previous publication.’
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Figure S11. The SEM micrographs of (i)a-Si:H-coated (6-nm-thick) textured c-Si samples

with A varied thicknesses of (n7)nc-SiO,:H-2 layers without plasma treatment and C different

durations of PT on ~23-nm-thick (n)nc-SiO,:H-2 layers. The top and bottom rows display top

views and cross-sectional views, respectively. B, D The measured activation energy (E,), dark

conductivity (o4) and Raman spectra of (n)nc-SiO,:H-2 layers with varied conditions are also

presented. The (7)nc-SiO,:H-2 layer thickness for the PT series to extract £, and a4 is around

38 nm. The deposition conditions and material properties of the (n)nc-SiO,:H-2 are reported in

a previous publication.’
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Figure S12. Raman spectra of 15-nm-thick (n)nc-Si:H layers with varied durations of the

plasma treatment. As the green laser (A5 = 514 nm) was used, the spectra are dominated by
the underlying (7)a-Si:H layers, showing insignificant differences with different durations of

plasma treatment.
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Figure S13. A The contact resistivity (p.) and B the effective minority carrier lifetime (zg) of
symmetric n-n device stacks as sketched in Figure 2(D) without the plasma treatment. In both

figures, the p. and z.¢ of samples with 6-nm-thick (7)a-Si:H are added for comparison.
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Figure S14. The thickness fractions of (i)a-Si:H and SiO, in around 13-nm-thick (7)a-Si:H

layers upon varying plasma treatment (PT) durations. The thickness of each layer was

determined via spectroscopic ellipsometry measurements.
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Figure S15. The effective minority carrier lifetime (zefr) values of symmetrical n-n samples

featuring 15-nm-thick (n)nc-Si:H layers, without or with a 2-nm-thick (n)a-Si:H capping

layer, as a function of plasma treatment duration, before ITO sputtering.
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Figure S16. The SEM micrographs of (7)a-Si:H-coated (6-nm-thick) textured c-Si samples
featuring 15-nm-thick (n)nc-Si:H layer and 15-nm-thick (n)nc-Si:H + 2-nm-thick (n)a-Si:H
layer stack A with a 30-second-long plasma treatment (PT) prior to (n)nc-Si:H deposition and
without ITO, and B without PT and with 10-nm-thick ITO layers. The top and bottom rows

display the top and cross-sectional views, respectively.
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Figure S17. A The SEM micrographs (with top and bottom rows displaying top views and
cross-sectional views, respectively) and B the reflectance spectra of (i)a-Si:H-coated (6-nm-
thick) textured c-Si samples with 15-nm-thick (#n)nc-Si:H + 2-nm-thick (n)a-Si:H layers ((n)-
layers) and 10-nm-thick ITO layers with varied durations of PT.



----- Bare c-Si wafer -+ - -+ Bare c-Si wafer + ITO
20 — (/) + 70 nm (n)nc-Si:H
(i) + 50 nm (n)nc-Si:H
(i) + 30 nm (n)nc-Si:H |
—— (i) + 15 nm (n)nc-Si:H i A
e - = = (i) +6 nm (n)a-Si:H )

(i) + 70 nm (n)nc-Si:H + ITO
() + 50 nm (nnc-Si:H + ITO
() + 30 nm (n)nec-Si:H + 1ITO

—— (i) + 15 nm (n)nc-Si:H + ITO g
= = = (i) + 6 nm (n)a-Si:H + ITO

Reflectance (%)
w
o
Reflectance (%)
w
o

T T T
300 600 900 1200 300 600 900 1200

Wavelength (nm) Wavelength (nm)

Figure S18. The reflectance spectra of samples featuring varied thicknesses of (n)nc-Si:H
layers A without and B with 10-nm-thick ITO layers, on (i)a-Si:H-coated (6-nm-thick) textured
c-Si substrates. The reflectance spectra of the bare textured c-Si wafer and the sample with 6-

nm-thick (n)a-Si:H layer are plotted as references.
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Figure S19. Contact angles after HTL-SAM deposition on textured c-Si wafers featuring
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various (n)-layers with 10-nm-thick ITO. The dashed line in the plot represents the contact
angle of the sample with 6-nm-thick (n)a-Si:H and 10-nm-thick ITO layers.
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Figure S20. Transformed GIWAXS images of perovskites deposited on samples with various

(n)-layers.
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Figure S21. The cross-sectional SEM micrograph of the sample featuring a 6-nm-thick (n)a-
Si:H layer.
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Figure S22. Absolute PL intensity images of perovskites deposited on samples with various

(n)-layers.
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Figure S23. The implied Voc (iVoc) of SHJ bottom-cell precursors corresponding to the
structure of (n)-layer (stack)/(i)a-Si:H/(n)c-Si/(i)a-Si:H/(p)-layer stack, where (n)-layer
(stack) refers to A varied thicknesses of (n)nc-Si:H layers without plasma treatment, and B
various (n)-layers (stacks), namely, 6-nm-thick (n)a-Si:H layer, 15-nm-thick (n)nc-Si:H
layer without plasma treatment (labeled as (n)nc-Si:H), and 15-nm-thick (n)nc-Si:H + 2-

nm-thick (n)a-Si:H layer stack with varied durations of plasma treatment.
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Figure S24. The EQE response of the perovskite-silicon tandem cell based on the silicon
bottom cell with a 6-nm-thick (n)a-Si:H layer. Note that the long-wavelength response of

perovskite top cell can occur when the limiting sub-cell is shunted.
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