Supplementary material

Co-occurrence of microbial source tracking markers and antibiotic resistance genes in the Chishui River, China

Qianxing Zheng^{a, b, 1}, Renren Wu^{a, 1}, Xinnuo Chen^c, Pengxia Liu^d, Kaiming Li^a, Changdong Ke^a, Yongjie Wu^a, Yang Zhang^{a*}, Shijie Xiao^e, Jianhong Huang^{b*}

^a The Key Laboratory of Water Environment Simulation and Pollution Control, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510535, China;

^bFaculty of Environment Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China;

^c School of Environment, South China Normal University, Guangzhou 510006, China;
^d Ecological Environment Monitoring and Scientific Research Center, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Shanghai 200125, China;

^e Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.

Corresponding Author: Yang Zhang; Jianhong Huang

Address: Ruihe Road 18, Huangpu District, Guangzhou 510535, P. R. China; Jing Mingnan Road 727, Chenggong District, Kunming 650550, P. R. China.

Email: zhangyang@scies.org; huangjianhong78@163.com

¹ Qianxing Zheng and Renren Wu are co-first authors.

		Numbon	Sompling sites	Longitude	Latitude	
		INUIIIDEI	Sampling sites	(E)	(N)	
	Upstream	M1	Source	104.755395	27.429673	
		M2	Banqiao section	104.918048	27.556668	
		M3	Luodian Bridge	105.026781	27.681048	
		M4	Xiaochi section	105.220302	27.753516	
		M5	Chahe Ferry	105.305992	27.707859	
Mainatusau	Midstream	M6	Caolian Creek	106.303628	27.806158	
Mainstream		M7	Tianjia Stockade	106.344285	27.942552	
		M8	Erlangtan Ferry	106.169343	28.151613	
		M9	Kowloon Tung	105.962077	28.344002	
	Downstream	M10	M10 Lianghekou section		28.483427	
		M11	Liyu Creek	105.737255	28.611676	
		M12 Terminal point		105.845271	28.798352	
	Upstream	T1	Banqiao section	104.821001	27.505572	
		T2	Midstream of Zaxi River	105.09746	27.774846	
		ТЗ	Downstream of Zaxi	105 175226	27 756589	
		15	River	105.175220	21.130303	
	Midstream	T4	Yanjin River	106.34701	27.816378	
Tributary		T5	Tongzi River	106.210075	28.136157	
		T6	Gulin River	106.035324	28.134109	
		T7	Banqiao Bridge tributary	105.963379	28.34387	
	Downstream	T8	Datong River	105.683069	28.523964	
		Т9	Helong Creek	105.716884	28.706052	
		T10	Xishui River	105.838414	28.794754	

Table S1 Information on the geographical location of samplin	g sites
--	---------

	Table S2 Physical and chemical indicators of sampling points during the dryseason								
Sites	DO	TN	TP (mg/L)	NH ₃ -N	COD	Turbidity (NTU)	pH	Conductivity (mS/cm)	T (°C)
			(IIIg/L)						
M1	11.87±0.61	2.55±0.86	$0.29{\pm}0.08$	0.06±0.01	4.33±0.58	4.93±0.38	7,41±0.05	0.30±0.01	12.27±0.12
M2	12.83±0.45	0.86±0.27	0.13±0.02	0.05 ± 0.01	16.33±4.16	5.48±0.34	8.35±0.03	$0.18{\pm}0.01$	18.17±0.06
M3	11.47±0.85	1.33±0.23	0.14 ± 0.04	0.03±0.00	6.33±1.53	13.40±1.14	8.58±0.10	0.32 ± 0.00	16.80±0.00
M4	12.43±0.67	3.45±0.47	0.12±0.02	0.04 ± 0.02	9.50±0.71	61.03±0.71	8.24±0.10	0.33±0.00	16.80±0.00
M5	13.17±0.06	$1.69{\pm}0.71$	0.12±0.03	0.03±0.00	5.67±0.58	24.10±2.95	8.41±0.01	0.33±0.00	17.50±0.00
M6	15.07±1.24	0.37±0.13	$0.04{\pm}0.02$	0.03 ± 0.00	21.67±10.07	6.47±1.55	8.56±0.05	0.39±0.00	18.43±0.06
M7	10.43±0.25	2.02±0.09	0.06 ± 0.04	0.05±0.01	17.67±3.51	2.80±0.53	8.14±0.01	0.41±0.00	18.20±0.00
M8	9.77±1.72	1.66±0.19	$0.05 {\pm} 0.01$	0.08 ± 0.00	11.67±0.58	1.63±1.07	7.90±0.12	$0.44{\pm}0.00$	17.93±0.15
M9	12.03±1.01	2.44±0.28	$0.06{\pm}0.02$	0.03±0.00	12.33±3.51	9.80±0.33	8.22±0.06	0.43±0.00	18.53±0.23
M10	1.73±0.50	1.46±0.30	0.19±0.10	0.05±0.01	9.00±0.00	12.03±1.51	8.08±0.11	0.39±0.00	18.03±0.06
M11	10.87±0.32	$1.59{\pm}0.58$	0.14±0.01	0.05 ± 0.02	8.33±3.06	7.60±0.85	7.89±0.12	0.35±0.00	18.40±0.10
M12	11.13±0.38	1.29±0.22	0.12±0.01	0.05 ± 0.00	6.00±1.73	14.07±1.55	7.85±0.09	0.30±0.00	18.00 ± 0.00
T1	10.60±0.00	4.20±1.40	$0.14{\pm}0.07$	0.05 ± 0.02	14.67±2.52	34.60±0.00	8.01±0.00	0.35±0.00	16.30±0.00
T2	11.43±0.40	6.85±0.63	$0.29{\pm}0.02$	1.34±0.10	18.67±2.52	9.65±4.82	8.32±0.01	0.39±0.00	17.40±0.00

Continued Table S2 Physical and chemical indicators of sampling points during the dryseason									l
Sitos	DO	TN	TP	NH ₃ -N	COD	Turbidity	nЦ	Conductivity	T (°C)
51105			(mg/L)			(NTU)	pm	(mS/cm)	1(0)
T3	12.77±0.29	3.16±0.34	0.27±0.02	1.07 ± 0.02	12.00±3.00	36.80±4.59	8.34±0.02	0.36±0.00	16.77±0.06
T4	11.07±0.29	8.78±0.65	0.29±0.02	1.58 ± 0.08	22.33±0.58	7.53±1.27	8.12±0.04	0.59±0.00	16.60±0.00
T5	13.37±0.55	2.37±0.55	0.02 ± 0.01	0.02 ± 0.02	35.00±36.43	14.87±1.68	8.23±0.17	0.40±0.00	16.40±0.00
T6	12.30±0.87	3.07±1.53	0.06±0.03	0.06±0.02	18.33±0.58	64.63±7.52	8.15±0.03	0.44±0.01	18.30±0.00
Τ7	12.23±0.42	4.39±1.20	0.14±0.01	0.03±0.00	6.00 ± 0.00	15.90±0.98	8.23±0.01	0.37±0.01	14.40±0.00
Τ8	12.77±0.97	3.21±0.97	0.09 ± 0.02	0.07 ± 0.00	4.00 ± 0.00	14.73±3.19	7.69±0.12	0.11±0.00	16.70±0.10
Т9	9.80±0.53	1.45±0.46	0.10±0.03	0.07 ± 0.02	12.00±5.29	29.33±7.10	7.84±0.19	0.32±0.00	18.50±0.10
T10	10.20±0.40	2.02±0.33	0.11±0.01	0.05±0.01	8.50±0.71	17.03±1.14	7.16±0.05	0.23±0.01	18.13±0.06

			5			1 01	0		
Sites	DO	TN	ТР	NH ₃ -N	COD	Turbidity	nН	Conductivity	т (°С)
51105			(mg/L)			(NTU)	pm	(mS/cm)	I (C)
M1	10.06±0.10	2.55±0.91	0.22±0.09	0.05±0.01	5.67±0.33	6.56±1.34	7.90±0.05	0.33±0.00	17.47±0.06
M2	10.6±0.30	4.20±0.02	0.14 ± 0.08	0.05 ± 0.03	14.67±1.33	121.67±2.08	8.31±0.08	0.31±0.00	19.43±0.06
M3	10.87±0.83	1.33±0.11	0.14 ± 0.01	0.03 ± 0.00	6.33±0.33	18.57±0.38	8.55±0.01	0.34 ± 0.00	23.10±0.00
M4	13.10±0.96	3.45±0.36	0.12 ± 0.07	0.04 ± 0.00	9.50±2.75	690.00±42.72	8.49±0.02	0.34 ± 0.00	19.10±0.00
M5	12.90±0.36	0.37 ± 0.08	0.04 ± 0.01	0.03±0.00	21.67±7.83	45.37±2.61	8.67±0.15	0.36±0.00	18.00±0.00
M6	12.00±0.56	1.69±0.36	0.12±0.01	0.04 ± 0.00	5.67±0.33	15.63±1.21	8.53±0.01	0.41 ± 0.00	22.83±0.23
M7	10.00±0.36	2.02±0.53	0.06±0.01	0.05±0.01	17.67±3.83	79.23±3.19	8.38±0.10	0.39±0.00	21.63±0.06
M8	10.50±0.00	1.66±0.85	0.05 ± 0.02	0.08 ± 0.02	11.67±2.83	43.47±2.72	8.33±0.01	0.40 ± 0.00	22.10±0.17
M9	11.40±0.36	2.44±0.20	0.06±0.02	0.03 ± 0.00	12.33±3.16	59.13±2.55	8.41±0.03	0.41 ± 0.00	23.40±0.00
M10	9.87±0.15	1.46±0.31	0.19±0.09	0.05 ± 0.02	9.00±2.00	16.90±0.17	8.36±0.05	0.42 ± 0.00	24.07±0.21
M11	10.30±0.00	1.59±0.36	0.14 ± 0.00	0.05±0.01	8.33±1.66	41.30±2.62	8.38±0.02	0.39±0.00	24.50±0.00
M12	10.00±1.21	1.29±0.15	0.12±0.02	0.05 ± 0.03	6.00±0.00	18.63±1.86	8.32±0.06	0.39±0.01	24.43±0.15
T1	10.06±0.30	4.39±0.11	0.14±0.10	0.03 ± 0.00	6.00±3.00	121.67±2.08	8.31±0.08	0.31±0.00	19.43±0.06
T2	11.37±0.47	6.85±1.89	0.29±0.09	1.34±0.65	18.67±5.83	9.65±0.99	8.64±0.10	$0.44{\pm}0.00$	13.40±0.35

Table S3 Physical and chemical indicators of sampling points during the wetseason

	CU	ntinucu 1a	bic 55 1 liy51	cui una chen		s of sumpring p	onnes during	the wetbedbol	1
Sitor	DO	TN	ТР	NH ₃ -N	COD	Turbidity	ъЦ	Conductivity	Т (°С)
51105			(mg/L)			(NTU)	рп	(mS/cm)	1(0)
Т3	11.67±0.72	3.76±0.59	0.21±0.06	0.76±0.3	10.5±1.5	12.85±0.92	8.52±0.01	0.40 ± 0.00	19.80±0.00
T4	10.13±0.06	5.38±3.39	0.26±0.03	0.82±0.75	14.16±8.16	8.05±0.90	$8.49{\pm}0.07$	0.49±0.00	22.93±0.06
T5	10.60±0.72	2.81±0.44	0.02 ± 0.00	0.02 ± 0.02	20.00±15.00	5.67±1.01	8.32±0.07	0.37±0.00	21.60±0.00
T6	9.43±0.25	3.27±0.21	0.04 ± 0.01	0.06±0.01	12.16±6.16	27.00±2.54	8.40±0.01	0.55±0.00	27.00±0.00
Τ7	8.93±0.55	1.71±0.85	0.24±0.11	0.15±0.11	13.66±2.66	62.97±0.15	8.52±0.04	0.25±0.02	28.70±0.00
T8	10.97±0.21	2.33±0.87	0.09 ± 0.00	0.12±0.05	8.00±4.00	34.33±2.30	8.27±0.09	0.12 ± 0.00	24.20±0.00
Т9	8.87±1.78	1.67±0.23	0.09 ± 0.00	0.14±0.07	12.00±0.00	16.97±0.58	8.18±0.06	0.32±0.00	26.90±0.00
T10	9.43±1.03	2.09±0.07	0.12±0.01	0.11±0.06	7.25±1.25	59.83±1.27	8.32±0.01	0.35±0.01	25.70±0.17

Continued Table S3 Physical and chemical indicators of sampling points during the wetseason

Gene	Primer	Sequence(5' \rightarrow 3')	Reference	
Deellum	BacHum-160f	TGAGTTCACATGTCCGCATGA	(Variable at al. 2015)	
Васнит	BacHum-241r	CGTTACCCCGCCTACTATCTAATG	(Kapoor et al., 2015)	
CBO 064	064F1	TGTATAGATGCTGCTGCAACTGTACTC	(Stachlar at al 2018)	
CPQ_064	064R1	CGTTGTTTTCATCTTTATCTTGTCCAT	(Stachler et al., 2018)	
Dia 1 Daa	Bac32-f	AACGCTAGCTACAGGCTTAAC	(Mieszkin et al.,	
Pig-1-Bac	Bac108r	CGGGCTATTCCTGACTATGGG	2009)	
	P.ND5-f	ACAGCTGCACTACAAGCAATGC	(I.a. et al. 2016)	
P.ND3	P.ND5-r	GGATGTAGTCCGAATTGAGCTGATTAT	(ne et al., 2010)	
Dum 2 Dec	BacB2-590f	ACAGCCCGCGATTGATACTGGTAA	(Mieszkin et al.,	
Kulli-2-Dac	Bac708Rm	CAATCGGAGTTCTTCGTGAT	2010)	
PacCow	CF128-f	CCAACYTTCCCGWTACTC	(Kildere et al. 2007)	
DacCow	305r	GGACCGTGTCTCAGTTCCAGTG	(Kildale et al., 2007)	
CED	GFD-f	TCGGCTGAGCACTCTAGGG	(Croop at al. 2012)	
UPD	GFD-r	GCGTCTCTTTGTACATCCCA	(Ofeen et al., 2012)	
A 11 Dec	AllBac296f	GAGAGGAAGGTCCCCCAC	(Alice at al. 2006)	
AllDac	AllBac412r	CGCTACTTGGCTGGTTCAG	(Allee et al., 2000)	
E coli	EC23S857F	GGTAGAGCACTGTTTTGGCA	(Charm at al. 2011)	
E. con	EC23S857R	TGTCTCCCGTGATAACTTTCTC	(Chefn et al. 2011)	
in+11	<i>intI1-</i> F	CCTCCCGCACGATGATC	(7 and at al 2010)	
11111	intI1-R	TCCACGCATCGTCAGGC	(Zelig et al. 2019)	
sul 1	<i>sul1-</i> F	CACCGGAAACATCGCTGCA	$(1 u_0 \text{ et al} 2010)$	
Sull	<i>sul1-</i> R	AAGTTCCGCCGCAAGGCT	(Luo et al. 2010)	
5417	<i>sul2-</i> F	CTCCGATGGAGGCCGGTAT	$(1 u_0 \text{ et al} 2010)$	
Sul2	sul2-R	GGGAATGCCATCTGCCTTGA	(Luo et al. 2010)	
tetW	tetW-F	GAGAGCCTGCTATATGCCAGC	$(A \min \alpha x \text{ at al } 2001)$	
lein	tetW-R	GGGCGTATCCACAATGTTAAC	(Annilov et al. 2001)	
tot()	tetO-F	TACGGARAGTTTATTGTATACC	$(\Delta \min \alpha x et al 2001)$	
ieiO	tetO-R	TGGCGTATCTATAATGTTGAC	(² minov et al. 2001)	
orm F	ermF-F	TCGTTTTACGGGTCAGCACTT	(Knann et al. 2010)	
<i>Ci IIII</i>	ermF-R	CAACCAAAGCTGTGTCGTTT	(Isimpp of al., 2010)	

Table S4 Primers sequence used in this study

Table S5. Comparison between log-transformed gene concentrations in water and sediment using paired *t*-test. For comparison between water and sediment, $\text{Log}_{10}\text{GC/g}$ sediment was converted to $\log_{10}\text{GC}/100$ g.Null hypothesis (H_O) is $\mu_{\text{sediment}} = \mu_{\text{water}}$ and alternative hypothesis (H_A) is $\mu_{\text{sediment}} > \mu_{\text{water}}$.

Gene	μ (sediment-water)
BacHum	0.93 (<i>p</i> < 0.001)
CPQ-064	1.66 (<i>p</i> < 0.001)
Pig-1-Bac	1.85 (<i>p</i> < 0.001)
P.ND5	4.24 (<i>p</i> < 0.001)
Rum-2-Bac	2.38 (<i>p</i> < 0.001)
BacCow	2.40 (<i>p</i> < 0.001)
GFD	2.54 (<i>p</i> < 0.001)
E. coli	1.64 (<i>p</i> < 0.001)
sul1	2.77 (<i>p</i> < 0.001)
sul2	3.08 (<i>p</i> < 0.001)
tetO	2.01 (<i>p</i> < 0.001)
tetW	2.16 (<i>p</i> < 0.001)
ermF	2.28 (<i>p</i> < 0.001)
intIl	2.93 (<i>p</i> < 0.001)

Fig. S1 The concentrations of *E. coli* in water and sediment. * p < 0.05; ** p < 0.01; *** p < 0.001.

Fig. S2 The concentration of *E. coli* in the water and sediment of the up, middle, and downstream of the mainstream and tributaries.

Fig. S3 The concentrations of MST markers, ARGs and MGE during the dryseason and wetseason. (a) MST markers in water samples; (b) MST markers in sediment samples; (c) ARGs in water samples; (d) ARGs in sediment samples. * p < 0.05; ** p < 0.01; *** p < 0.001.

Reference

- Alice, L., Larry, M.K., Dan, W., Victoria, G., Randall, G., Gary, S., 2006. Development of *Bacteroides* 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl. Environ. Microbiol. 72(6), 4214-4224. https://doi.org/10.1128/AEM.01036-05.
- Aminov, R.I., Garrigues-Jeanjean, N., Mackie, R.I., 2001. Molecular ecology of tetracycline resistance: Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl. Environ. Microbiol. 67(1), 22-32. <u>https://doi.org/10.1128/AEM.67.1.22-32.2001</u>.
- Chern, E.C., Siefring, S., Paar, J., Doolittle, M., Haugland, R.A., 2011. Comparison of quantitative PCR assays for *Escherichia coli* targeting ribosomal RNA and single copy genes. Lett. Appl. Microbiol. 52(3), 298–306. https://doi.org/10.1111/j.1472-765X.2010.03001.x.
- Green, H.C., Dick, L.K., Gilpin, B.J., Samadpour, M., Field, K.G., 2012. Genetic markers for rapid PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in water. Appl. Environ. Microbiol. 78(2), 503-510. <u>https://doi.org/10.1128/AEM.05734-11</u>.
- He, X., Liu, P., Zheng, G., Chen, H., Shi, W., Cui, Y., Ren, H., Zhang, X., 2016. Evaluation of five microbial and four mitochondrial DNA markers for tracking human and pig fecal pollution in freshwater. Sci. Rep. 6, 35311. https://doi.org/10.1038/srep35311.
- Kapoor, V., Pitkänen, T., Ryu, H., Elk, M., Wendell, D., Domingo, J.W.S., 2015. Distribution of human-specific *Bacteroidales* and fecal indicator bacteria in an urban watershed impacted by sewage pollution, determined using RNA- and DNA-based quantitative PCR assays. Appl. Environ. Microbiol. 81(1), 91-99. https://doi.org/10.1128/AEM.02446-14.
- Kildare, B.J., Leutenegger, C.M., Mcswain, B.S., Bambic, D.G., Rajal, V.B., Wuertz, S., 2007. 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal *Bacteroidales*: A bayesian approach. Water Res. 41(16), 3701-3715. <u>https://doi.org/10.1016/j.watres.2007.06.037</u>.

- Knapp, C.W., Dolfing, J., Ehlert, P.A., Graham, D.W., 2010. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44, 580-587.
- Luo, Y., Mao, D., Rysz, M., Zhou, Q., Zhang, H., Xu, L., J.J. Alvarez, P., 2010. Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ. Sci. Technol. 44(19), 7220-7225. <u>https://doi.org/10.1021/es901221x</u>.
- Mieszkin, S., Furet, J., Corthier, G., Gourmelon, M., 2009. Estimation of pig fecal contamination in a river catchment by Real-Time PCR using two pig-specific *Bacteroidales* 16S rRNA genetic markers. Appl. Environ. Microbiol. 75(10), 3045-3054. <u>https://doi.org/10.1128/AEM.02343-08</u>.
- Mieszkin, S., Yala, J.F., Joubrel, R., Gourmelon, M., 2010. Phylogenetic analysis of *Bacteroidales* 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR. J. Appl. Microbiol. 108(3), 974-984. <u>https://doi.org/10.1111/j.1365-2672.2009.04499.x</u>.
- Stachler, E., Akyon, B., De Carvalho, N.A., Ference, C., Bibby, K., 2018. Correlation of crAssphage qPCR markers with culturable and molecular indicators of human fecal pollution in an impacted urban watershed. Environ. Sci. Technol. 52(13), 7505-7512. https://doi.org/10.1021/acs.est.8b00638.
- Zeng, Q., Sun, J., Zhu, L., 2019. Occurrence and distribution of antibiotics and resistance genes in greenhouse and open-field agricultural soils in China. Chemosphere. 224, 900-909. <u>https://doi.org/10.1016/j.chemosphere.2019.02.167</u>.