Supplementary Material - Are Ingredients of Personal Care Products Likely to Undergo Long Range Transport to Remote Regions?

Marianna D'Amico,^{a,*} Frank Wania,^b Knut Breivik,^{c,d} Henrik Skov,^e Andrea Spolaor,^{a,f} Lise Lotte Sørensen,^e Andrea Gambaro,^a Marco Vecchiato^a

^aCa' Foscari University of Venice; Department of Environmental Sciences, Informatics and Statistics (DAIS), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy

^b Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4

^c Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller, Norway

^d Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315 Oslo, Norway

^e Aarhus University; Department of Environmental Science, ARC, Frederiksborgvej 399, 4000 Roskilde, Denmark

^fInstitute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy

AmylS (Amyl Salicylate; Pentyl 2-hydroxybenzoate) CAS no: 2050-08-0	HO
IsoamylS (Isoamyl Salicylate; 3-Methylbutyl 2-hydroxybenzoate) CAS no: 87-20-7	HO
OraC (Oranger Crystals; 2-Acetonaphthone) CAS no: 93-08-3	CH3
HexS (Hexyl Salicylate; Hexyl 2-hydroxybenzoate) CAS no: 6259-76-3	но
Peo (Peonile; 2-Cyclohexylidene-2-phenylacetonitrile) CAS no: 10461-98-0	CN
Amb (Ambrofix; Dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1- b]furan) CAS no: 6790-58-5	

Table S1. Structure, common and IUPAC name, and CAS of selected PCPs.

BenS (Benzyl Salicylate; Benzyl 2-hydroxybenzoate) CAS no: 118-58-1	HO HO
EHMC (Ethylhexyl methoxycinnamate; 2-ethylhexyl 3-(4- methoxyphenyl)prop-2-enoate) CAS no: 5466-77-3	H ₃ CO
BP3 (Benzophenone-3; 2-hydroxy-4-methoxyphenyl)- phenylmethanone) CAS no: 131-57-7	O OH OCH3
EHS (Ethylhexyl Salicylate; 2-ethylhexyl 2-hydroxybenzoate) CAS no: 118-60-5	O O O H CH ₃
OCR (Octocrylene; 2-ethylhexyl 2-cyano-3,3-diphenylprop-2-enoate) CAS no: 6197-30-4	
BHT (Butylated hydroxytoluene; 2,6-ditert-butyl-4-methylphenol) CAS no: 128-37-0	$\begin{array}{c} H_{3}C\\H_{3}C\\H_{3}C\\H_{3}C\\H_{3}\end{array} \xrightarrow{OH} H_{3}C\\H_{3}\\H_{3}C\\H_{3}\end{array}$

Table S2 Information of 12 PCP chemicals: manufacture and/or import in tonnes/year in European Union (EU) and United States (U.S.), consumer use, price of the chemicals in Euro, and the properties of concern detected so far.

Common name	Manufacture and/or import (tonnes/year)	Consumer use ^a	Price (Euro)	Properties of concern
AmylS	$EU \ge 10^{a}$	Air care products,	< 100 for 1 kg °	Development and
	U.S. < 500 (2019) ^b	biocides, perfumes,		reproductive toxicity ^b
IsoamylS	$EU \geq 10$ to $< 100\ensuremath{^{a}}$	fragrances, polishes	76 for 500 mL d	Acute toxicity ^a
	U.S. < 500 (2019) ^b	and waxes, washing &		
OraC	EU \geq 100 to < 1,000 $^{\rm a}$	cleaning products, and	~ 35 for 100 g ^{c,d}	Eye irritation ^a
	U.S. < 50 (2019) ^b	cosmetics		
HexS	$EU \ge 1,000$ to		~ 20 for 100 g °	Skin sensitising ^a
	< 10,000 ª		-	-
	U.S. < 5,000 (2019) ^b			
Peo	$EU \ge 100^{a}$		~ 40 for 100 g ^c	Acute toxicity ^a
	U.S. < 500 (2019) ^b		-	
Amb	$EU \ge 100 \text{ to} < 1,000 \text{ a}$		205 for 25 g d	Reproductive toxicity ^a
	U.S. < 50 (2019) ^b		_	
BenS	$EU \ge 1,000$ to		< 15 for 100 g ^c	Skin sensitising ^a
	< 10,000 a		-	-
	U.S. < 5,000 (2019) ^b			
EHMC	$EU \ge 1,000$ to	Cosmetics, personal	~ 50 for 100 mL d	Hepatoxicity ^b
	< 10,000 ^a	care products,		
	U.S. > 500 total	Washing and cleaning		
	Production Volumes	products		
	between 2016 and			
	2019 в			
BP3	$EU \ge 100$ to	Cosmetics and	100 for 500 g d	Endocrine Disrupting ^a
	< 1,000 ª	personal care products,		
	U.S. < 200 (2019) ^b	coating products,		
		fillers, putties, plasters,		
		modelling clay and		
		finger paints		
EHS	$EU \ge 1,000$ to	Cosmetics and	75 for 500 mL d	Reproduction and
	< 10,000 ª	personal care products		development toxicity ^a
	U.S. < 10,000	and perfumes and		
	(2019) ^b	fragrances		
OCR	$EU \ge 1,000$ to	Cosmetics and	77 for 100 g ^d	Persistent,
	< 10,000 ^a	personal care products		Bioaccumulative and
	U.S. < 10,000	and perfumes and		Toxic ^a
	(2019) ^b	fragrances		
		W. 1' 0 1 '	20.0 500 4	
BHT	$EU \ge 10,000$ to	Washing & cleaning	30 for 500 g a	Endocrine Disrupting ^a
	< 100,000 a	products, lubricants		
	∪.S. < 5,000 (2019) ^b	and greases, plant		
		protection products,		
		adhesives and sealants,		

polishes and waxes,
coating products and
fertilisers.

a – ECHA Website. Manufactured/Imported values per registrant. (Accessed on 5th January 2025)

b – ChemView – United States Environmental Protection Agency (<u>https://chemview.epa.gov/chemview/#null)</u> (Accessed on 5th January 2025). Reported values refer to the National Aggregate Production Volumes of year 2019 unless otherwise specified.

c – Pellwall website. (https://pellwall.com/) (Accessed on 5th January 2025).

d – TCI Europe website. (https://www.tcichemicals.com/IL/en/) (Accessed on 5th January 2025).

Name	Mean blank [ng abs]	MDL [ng abs]
IsoamylS	0.76 ± 0.09	0.3
AmylS	0.72 ± 0.18	0.6
OraC	0.15 ± 0.01	0.0
HexS	0.84 ± 0.59	1.8
Peo	0.23 ± 0.16	0.5
Amb	0.20 ± 0.15	0.5
BenS	0.33 ± 0.12	0.3
EHMC	0.08 ± 0.03	0.1
BP3	0.14 ± 0.09	0.3
EHS	1.66 ± 0.31	0.9
OCR	1.09 ± 0.31	0.9
BHT	1.53 ± 1.06	3.2
OraC HexS Peo Amb BenS EHMC BP3 EHS OCR BHT	$\begin{array}{c} 0.15 \pm 0.01 \\ 0.84 \pm 0.59 \\ 0.23 \pm 0.16 \\ 0.20 \pm 0.15 \\ 0.33 \pm 0.12 \\ 0.08 \pm 0.03 \\ 0.14 \pm 0.09 \\ 1.66 \pm 0.31 \\ 1.09 \pm 0.31 \\ 1.53 \pm 1.06 \end{array}$	0.0 1.8 0.5 0.5 0.3 0.1 0.3 0.9 0.9 3.2

Table S3. Mean blank levels (n=3) with standard deviation, and Method Detection Limits (MDL). Mean detection limits are calculated as three times the standard deviation of the blank signal.

Table S4. Physical and chemical properties used in the calculations for the chemical partitioning space. Log K_{WA} (water-air partition ratio), log K_{IA} (ice-air partition ratio), log K_{SA} (snow-air partition ratio), log K_{OA} (octanol-air partition ratio), log K_P (particle-air partition ratio), A (hydrogen bond acidity descriptor), B (hydrogen bond basicity descriptor), L (solute gas-liquid partition descriptor).

Chemicals	log K _{WA}	log K _{IA} ª	log K _{SA} ^b	log K _{OA}	log K _P ^c	A ^d	B d	L d
IsoamylS	3.05	-1.05	-0.27	7.42	-4.83	0.07	0.50	7.29
AmylS	3.19	-1.14	-0.36	7.45	-4.81	0.07	0.50	7.15
OraC	4.63	-1.53	-0.74	7.43	-4.83	0.00	0.50	6.91
HexS	2.96	-0.73	0.05	7.86	-4.40	0.07	0.50	7.79
Peo	3.67	-0.78	-0.05	7.90	-4.35	0.00	0.53	7.84
Amb	2.22	-0.80	-0.07	7.46	-4.79	0.00	0.53	7.81
BenS	4.62	0.50	0.99	8.72	-3.54	0.07	0.67	8.36
EHMC	4.10	1.57	2.04	10.18	-2.08	0.00	0.69	10.26
BP3	5.97	0.58	1.27	9.61	-2.65	0.16	0.55	8.91
EHS	2.79	-0.35	0.47	8.52	-3.73	0.07	0.48	8.55
OCR	6.08	4.12	4.29	13.14	0.89	0.00	0.87	12.83
BHT	2.80	0.39	1.06	8.06	-4.19	0.35	0.55	7.56

^a Calculated using Eq. (3) by (Lei and Wania, 2004)

^bCalculated using Eq. (5) by (Lei and Wania, 2004)

^cCalculated using Eq. (10) by (Harner and Bidleman, 1998)

^d EAS-E Suite

SI Section 1

 $\begin{array}{l} \underline{Prediction \ of \ internal \ energies} \\ \Delta U_{AW} = \Delta H_{AW} + RT \qquad R \ [J \ mol^{-1} \ K^{-1}] = 8.31 \qquad T = 298.15 \ K \\ \Delta U_{OA} = -8.75(\pm 0.18) \cdot \log_{10} K_{OA} - 5.07(\pm 1.19) \qquad (Baskaran \ et \ al., \ 2023). \\ \Delta U_{OW} = \Delta H_{OW} \end{array}$

Table S5 Equations and default parameters used to derive the atmospheric distribution ratios in a cloud at temperatures below and above freezing (Lei and Wania, 2004).

Equations		
K _{Rain/Air}	K_{WA} +3 K_{IA} / r	
$K_{ m Snow/Air}$	$A_{I}\rho_{W}K_{SA}$	
$\log K_{Particle/Air}$	logK _p *p	
Parameters		
r [mm]	Droplet radius	1
$A_{I}[m^{2}g^{-1}]$	Specific surface area	0.1
$\rho_W[g m^{-3}]$	Density of water	106
ρ [μg m ⁻³]	Density of particles	1.7x10 ¹²

SI Section 2

EFA model equations

Partitioning ratios

 $K_{AW} = 10 \land (\log K_{AW} + \Delta U_{AW} * (1 / 298.15 - 1 / T) / (2.303 * R))$ $K_{OW} = 10 \land (\log K_{OW} + \Delta U_{OW} * (1 / 298.15 - 1 / T) / (2.303 * R))$ $K_{OA} = K_{OW} / K_{AW}$

T is the temperature in Kelvin (298.15 or 273.15). $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$.

Degradation half-lives

The reaction rate of a chemical in the air is a function of temperature (Kelvin) and of the concentration of OH radicals.

The OH radicals were coded in the model in the following way:

 $OH_{warm} = 1500000\# / 2$ (24-hour average based on EPIWIN 12 hr average of 1.5E6 radicals / cm³)

 $OH_{cold} = OH_{warm} / 10$ (assumed to be 10% of the warm region)

Activation Energies (EA)

Activation energies for reaction in J/mol [model input].

kRAref [model input - cm3 molecules-1 sec-1] kRWref = Log(2) / HalfLife, water [the half-life in water at 25°C is model input]

kRSref = Log(2) / HalfLife, soil [the half-life in soil at 25°C is model input]

 $T = 25^{\circ}C$

```
kRA = kRAref * OHwarm * 3600 * Exp (EAair / R * (1 / 298.15 - 1 / 298.15)) [3600 is used for unit conversion]
```

```
kRW = kRWref
```

kRS = kRSref

 $T = 0^{\circ}C$

kRA = kRAref * OHcold * 3600 * Exp (EAair / R * (1 / 298.15 - 1 / 273.15))

kRW = kRWref * Exp (EAwater / R * (1 / 298.15 - 1 / 273.15))

kRS = kRSref * Exp (EAsoil / R * (1 / 298.15 - 1 / 273.15))

End If

HalfLife, air= Log(2) / kRA HalfLife, water = Log(2) / kRW HalfLife, soil = Log(2) / Krs

Table S6 Concentrations (ng L ⁻¹	¹), the relative percentage	difference (RPD) and	d the total average	RPD of PCP	chemicals in duplicate	snow samples c	collected at
the Villum Research Station.							

	17/	/12/20 VRS)18 1	28/01/2019 VRS 2	11/ \	02/20 VRS ()19 3	25/ \	02/20 /RS 4	19	11/ \	03/20 /RS :)19 5	25	5/03/2 VRS	019 6	08	/04/2 VRS	019 7	22	2/04/201 VRS 8	9	06	/05/2 VRS	019 9	21 V	/05/2019 /RS 10	9	03/ V	06/20 7RS 1)19 1	Average RPD
	R1	R2	%		R1	R2	%	R1	R2	%	R1	R2	%	R1	R2	%	R1	R2	%	R1	R2	%	R1	R2	%	R1	R2	%	R 1	R2	%	МD
IsoamylS	1.6	1.1	37	1.2	1.8	2.8	43	5.0	5.3	6	8.2	9.6	16	2.1	3.1	38	7.3	6.9	6	2.4	4.1	52	1.1	0.8	32	185.7	182.5	2	2.2	2.2	0	8%
AmylS	1.3	1.4	7	1.3	1.9	2.4	23	3.9	3.1	23	1.3	1.4	7	1.1	2.7	84	1.9	2.1	10	2.3	2.3		ldl	ldl		113.8	125.7	10	2.4	2.5	4	8%
OraC	0.2	0.2	0	0.5	0.8	1.0	22	2.7	2.2	20	2.3	2.4	4	0.6	1.2	67	3.8	3.2	17	0.5	1.7	109	ldl	ldl		2.0	2.2	10	0.3	0.3	0	14%
HexS	ldl	ldl		ldl	ldl	ldl		11.2	8.9	23	ldl	ldl		3.5	5.7	48	5.2	5.7	9	3.7	5.0	30	ldl	ldl		182.3	193.2	6	6.2	6.1	2	19%
Peo	ldl	ldl		ldl	ldl	ldl		1.3	0.9	36	ldl	ldl		ldl	ldl		ldl	ldl			ldl		ldl	ldl		9.1	11.5	23	ldl	ldl		11%
Amb	ldl	ldl		ldl	ldl	ldl		1.4	0.9	43	ldl	ldl		ldl	ldl		ldl	ldl			ldl		ldl	ldl		31.4	37.5	18	ldl	ldl		7%
BenS	0.9	1.2	29	1.8	1.1	1.8	48	6.1	5.0	20	1.2	1.0	18	0.6	4.2	150	1.3	2.1	47	3.8	5.9	43	ldl	ldl		18.0	20.0	11	1.3	1.3	0	13%
EHMC	0.4	0.8	67	1.5	0.3	0.4	29	0.7	0.3	80	ldl	ldl		0.4	0.3	29	0.6	0.2	100	9.5	6.5	38	0.4	0.3	29	0.3	1.3	125	0.6	0.2	100	32%
BP3	2.2	4.4	67	5.9	1.3	2.1	47	1.9	2.4	23	0.8	1.1	32	0.5	0.6	18	ldl	ldl		1.1	0.8	32	0.7	2.9	122	5.5	9.2	50	0.6	0.8	29	17%
EHS	2.1	4.3	69	3.6	3.1	4.5	37	12.8	11.0	15	1.9	2.1	10	2.7	8.6	104	3.9	5.0	25	31.9	46.9	38	ldl	ldl		79.8	85.6	7	12.6	7.5	51	40%
OCR	2.1	5.0	82	8.5	2.6	4.5	54	3.6	2.1	53	ldl	ldl		ldl	ldl		ldl	ldl		181.8	153.1	17	ldl	ldl		2.9	6.3	74	ldl	ldl		25%
BHT	ldl	ldl		ldl	ldl	ldl		ldl	ldl		ldl	ldl		ldl	ldl		ldl	ldl			ldl		ldl	ldl		11.9	12.9	8	ldl	ldl		28%
																												Tota	ıl avei	rage l	RPD	12%

ldl – below the detection limit

Table S7 Arithmetic mean concentrations (ng L⁻¹) of PCP chemicals in duplicates snow samples collected at the Villum Research Station. Total load of FMs, UVFs, and PCP chemicals in each sample, and the total amount of each chemical found during the sampling period.

	VRS 1	VRS 2	VRS 3	VRS 4	VRS 5	VRS 6	VRS 7	VRS 8	VRS 9	VRS 10	VRS 11	Tot (ng L ⁻¹)
	17/12/2018	28/01/2019	11/02/2019	25/02/2019	11/03/2019	25/03/2019	08/04/2019	22/04/2019	06/05/2019	21/05/2019	03/06/2019	
BHT	ldl	12.4	ldl	12.4								
IsoamylS	1.3	1.2	2.3	5.1	8.9	2.6	7.1	3.3	1.0	184.1	2.2	219.2
AmylS	1.4	1.3	2.2	3.5	1.4	1.9	2.0	2.3	ldl	119.8	2.5	138.2
OraC	0.2	0.5	0.9	2.4	2.3	0.9	3.5	1.1	ldl	2.1	0.3	14.3
HexS	ldl	ldl	ldl	10.1	ldl	4.6	5.4	4.4	ldl	187.8	6.2	218.4
Peo	ldl	ldl	ldl	1.1	ldl	ldl	ldl	ldl	ldl	10.3	ldl	11.4
Amb	ldl	ldl	ldl	1.1	ldl	ldl	ldl	ldl	ldl	34.5	ldl	35.6
BenS	1.1	1.8	1.5	5.5	1.1	2.4	1.7	4.9	ldl	19.0	1.3	40.2
EHMC	0.6	1.5	0.3	0.5	ldl	0.4	0.4	8.0	0.3	0.8	0.4	13.2
BP3	3.3	5.9	1.7	2.1	0.9	0.6	ldl	0.9	1.8	7.4	0.7	25.3
EHS	3.2	3.6	3.8	11.9	2.0	5.6	4.4	39.4	ldl	82.7	10.0	166.8
OCR	3.6	8.5	3.6	2.8	ldl	ldl	ldl	167.5	ldl	4.6	ldl	190.5
∑FMs	4.0	4.8	6.8	29.0	13.7	12.4	19.7	16.0	1.0	557.4	12.4	
∑UVFs	10.8	19.4	9.4	17.3	3.0	6.6	4.8	215.8	2.1	95.5	11.1	
Tot (ng L ⁻¹)	15.0	24.1	16.3	46.3	16.7	19.0	24.6	231.8	3.1	665.3	23.5	

ldl – below the detection limit

Figure S1. Temperature (a) and snow depth (b) data obtained from in situ observation at an automatic weather station at VRS, showing maximum, minimum, and average values from 18th December 2018 to 3rd June 2019. The plots represent daily averages (with shading indicating the standard deviation) based on five-minute average data collected throughout each day. Vertical blue lines indicate high PCPs concentration events on 22nd April and 21st May 2019, while the shaded orange area highlights the identified snowfall event prior to 21st May 2019.

Figure S2 Back trajectory frequencies simulated with HYSPLIT Trajectory Model online version for each sampling date at the Villum Research Station.

Figure S3 Wind Rose illustrating the distribution of wind directions and associated wind speeds recorded between the 8-22 April and 6-21 May 2019, two weeks before the two events of contamination registered at the Villum Research Station on April 22nd and May 21st. The radial bars indicate the frequency of occurrence of wind from each direction, with longer bars signifying higher frequencies. The coloured segments within each bar represent wind speeds categorized by the legend, with colours ranging from purple (lower speeds) to red (higher speeds). The scale at the bottom shows the wind speed intervals in meters per second (m s⁻¹).

Figure S4 Wind Rose illustrating the distribution of wind directions and associated wind speeds recorded 24 hours before the snow depth increase recorded on May 14th 2019.

Figure S5 HYSPLIT back trajectories calculated for May 14th 2019, following the identified precipitation event.

Table S8 The mean of the partition ratios estimated at 25°C with UFZ LSER, EAS-E Suite, COSMOtherm, EPI Suite, SPARC. Their adherence to the thermodynamic triangle without OPERA calculations is displayed (closure).

Chemical	log K _{OW}	log K _{AW}	log K _{OA}	closure	abs closure
Isoamyl Salicylate	4.35	-3.05	7.42	-0.02	0.02
Amyl Salicylate	4.25	-3.19	7.45	-0.02	0.02
Oranger Crystals	2.86	-4.63	7.43	0.06	0.06
Hexyl Salicylate	4.86	-2.96	7.86	-0.04	0.04
Peonile	4.24	-3.67	7.90	0.01	0.01
Ambrofix	5.23	-2.22	7.46	-0.01	0.01
Benzyl Salicylate	4.13	-4.62	8.72	0.03	0.03
EHMC	6.09	-4.10	10.18	0.01	0.01
BP3	3.63	-5.97	9.61	-0.01	0.01
EHS	5.70	-2.79	8.52	-0.03	0.03
OCR	7.14	-6.08	13.14	0.08	0.08
BHT	5.37	-2.80	8.06	0.11	0.11
Average					0.04

Table S9 Partition ratios estimated with COSMOtherm at 0 $^{\circ}\mathrm{C}$ and -6.8 $^{\circ}\mathrm{C}$

Chamical	COSMOthe	erm 0 °C		COSMOTh	COSMOTherm -6.8 °C					
Chemical	log K _{OW}	log K _{AW}	log K _{OA}	log K _{OW}	log K _{AW}	log K _{OA}				
Isoamyl Salicylate	4.68	-3.38	8.17	4.67	-3.75	8.53				
Amyl Salicylate	4.68	-3.38	8.17	4.67	-3.75	8.53				
Oranger Crystals	2.54	-5.89	8.32	2.50	-6.27	8.66				
Hexyl Salicylate	5.26	-3.26	8.65	5.25	-3.64	9.03				
Peonile	3.86	-5.19	9.01	3.84	-5.57	9.38				
Ambrofix	4.32	-4.77	9.09	4.23	-5.25	9.47				
Benzyl Salicylate	4.66	-4.68	9.42	4.68	-5.06	9.83				
EHMC	5.94	-6.07	11.99	5.87	-6.66	12.52				
BP3	3.60	-6.76	10.33	3.59	-7.21	10.76				
EHS	5.98	-3.13	9.27	5.96	-3.56	9.68				
OCR	6.55	-7.55	14.07	6.50	-8.19	14.67				
BHT	5.62	-2.75	8.56	5.59	-3.16	8.94				

Table S10 Input data for EFA model. Molecular weight (MW), environmental degradation half-lives, internal energies of phase transfer, and the environmental activation energies for 12 PCP chemicals.

Γ	Che	emical	MW	k _{RAref}	H	lalf-life in	H	Ialf-life in	$\Delta U_{\rm AW}$ °	$\Delta U_{ m OW}$ d	EaAir	E _{aWater}	EaSoil
			(g/mol)	(cm ³ molecules ⁻ ¹ sec ⁻¹) ^a	wa	ter (hours) ^b	S	Dil (hours) ^b					
BHT		220.35	1.64E-1	1 13	72.7	2745	.5	84174	2851	10000	30000	30000	
IsoamylS		208.25	1.71E-1	1 15	0.03	300.0)5	70717	-2357	10000	30000	30000	
AmylSal		208.25	1.7E-1	1 2	66.3	532	.6	71474	-1275	10000	30000	30000	
OrangerCrys	tals	170.21	1.11E-1	1 52	5.84	1051	.7	69459	-1289	10000	30000	30000	
HexylSal		222.27	1.77E-1	1 15	5.76	311.5	52	74181	-3476	10000	30000	30000	
Peonile		197.27	3.55E-1	1 45	1.25	902.4	19	73184	-3484	10000	30000	30000	
Ambrofix		236.38	2.56E-1	1 37	23.9	7447	.8	83743	4115	10000	30000	30000	
BenzylSal		228.24	1.58E-1	1 27	0.93	541.8	36	75327	-6596	10000	30000	30000	
EHMC		290.39	3.48E-1	1 20	8.73	417.4	16	105412	3604	10000	30000	30000	
BP3		228.24	1.08E-1	0 40	5.43	810.8	36	81894	-6817	10000	30000	30000	
EHS		250.33	1.94E-1	1 18	2.14	364.2	27	81276	-1959	10000	30000	30000	
Octocrylene		361.48	1.73E-1	1 25	0.94	501.8	37	120717	1112	10000	30000	30000	

^a Average values calculated using OPERA and EPISuite

^b Values calculated with OPERA

^c Average of three prediction techniques: Van't Hoff equation with COSMOtherm data, and ΔU from ΔH ppLFER with UFZ LSER and EAS-E Suite data ^d Values calculated from thermodynamic triangle $\Delta U_{OA} + \Delta U_{AW}$. Where ΔU_{OA} was calculated using Van't Hoff equation with COSMOtherm data, ΔU from ΔH pplfer with UFZ LSER and EAS-E Suite data, and eq. 2 in table 1 from Baskaran et al. 2023 (Baskaran et al., 2023). Table S11 Predicted metrics for 12 PCP chemicals and the minimum values predicted for 14 POPs under the Stockholm Convention in the three emission scenarios. All predictions refer to both warm and cold scenarios.

	BHT	IsoamylS	AmylS	OraC	HexS	Peo	Amb	BenS	EHMC	BP3	EHS	OCR	Min values POPs
φ1 warm	-3.63	-3.65	-3.65	-3.49	-3.67	-3.96	-3.68	-3.63	-3.91	-4.43	-3.70	-2.36	-3.3
φ2 warm	-4.23	-4.95	-4.72	-4.40	-4.94	-4.49	-4.29	-4.68	-4.80	-4.51	-4.89	-2.42	-4.1
φ3 warm	-6.20	-8.43	-7.97	-7.45	-8.20	-7.51	-5.94	-7.95	-6.98	-7.65	-7.46	-3.83	-5.1
φ2 cold	-3.92	-3.94	-3.94	-3.66	-3.96	-4.41	-4.02	-3.84	-4.05	-4.51	-4.01	-2.36	-3.4
φ3 cold	-5.47	-6.93	-6.70	-6.10	-6.71	-6.94	-5.26	-6.61	-5.91	-7.17	-6.09	-3.35	-3.9

Table S12 Input data for EFA model. Molecular weight (MW), physical chemical properties at 25°C, environmental degradation half-lives, internal energies of phase transfer, and the environmental activation energies for 14 POPs under the Stockholm Convention.

Chemical	MW	log K _{AW}	log K _{OW}	k _{RAref}	Half-life in	Half-life in	$\Delta U_{\rm AW}$	$\Delta U_{ m OW}$	<i>E</i> _{aAir}	E _{aWater}	EaSoil
	(g/mol)	(-)	(-)	(cm ³ molecules-	water (hours)	soil (hours)					
				¹ sec ⁻¹)							
a-HCH	290.9	-3.53 °	3.94 °	9.95 E-14 °	8,760 h	2,190 h	56,800 °	-5,100 °	10,000	30,000	30,000
g-HCH	290.9	-3.91 °	3.83 °	1.19 E-13 °	8,760 ^h	2,190 ^h	57,200 °	-10,200 °	10,000	30,000	30,000
PCB-28	257.54	-1.93 ^I	5.66 ^I	1.04 E-12 ^f	5,500 ^k	10,000 ^k	52,300 ª	-26,300 ª	10,000	30,000	30,000
PCB-52	291.99	-1.96 ^I	6.26 ^I	5.90 E-13 ^f	10,000 f	17,000 f	54,100 ª	-27,300 ª	10,000	30,000	30,000
PCB-101	326.43	-2.08 ^I	6.38 ^I	3.00 E-13 ^f	31,000 ^k	100,000 ^k	59,700 ª	-23,800 ª	10,000	30,000	30,000
PCB-118	360.88	-2.36 ^I	6.65 ^I	3.00 E-13 ^f	31,000 f	100,000 f	60,500 ª	-28,500 ª	10,000	30,000	30,000
PCB-138	360.88	-1.97 ^I	7.19 ^I	1.60 E-13 ^f	55,000 f	170,000 f	61,300 ª	-25,000 ª	10,000	30,000	30,000
PCB-153	360.88	-2.13 ^I	6.86 ^I	1.60 E-13 ^f	55,000 f	550,000 f	62,800 ª	-31,100 ª	10,000	30,000	30,000
PCB-180	395.32	-2.51 ^I	7.15 ^I	1.10 E-13 ^f	55,000 ^k	1,000,000 ^k	63,600 ª	-29,100 ª	10,000	30,000	30,000
HCB	284.8	-3.91 b	3.83 b	1.29 E-14 °	4,320 d	8,640 d	50,490 ь	-24,700 ^ь	10,000	30,000	30,000
pp-DDT	354.5	-3.34 b	6.39 ^b	3.44 E-12 ^d	4,320 ^d	8,640 d	68,978 ^g	-24,350 ^g	10,000	30,000	30,000
pp-DDD	321	-3.70 b	6.33 ^b	4.34 E-12 ^d	4,320 ^d	8,640 ^d	69,948 ^g	-23,960 g	10,000	30,000	30,000
cis-Chlordane	409.8	-2.63 b	6.20 ^b	7.09 E-12 ^d	4,320 d	4,320 d	81,388 g	-10,150 g	10,000	30,000	30,000
trans-chlordane	409.8	-2.56 b	6.27 ^b	7.09 E-12 ^d	4,320 d	4,320 d	78,368 g	-6,640 ^g	10,000	30,000	30,000

^aLi et al. 2003 A Comprehensive and Critical Compilation, Evaluation, and Selection of Physical–Chemical Property Data for Selected Polychlorinated Biphenyls (Li et al., 2003)

^b Shen and Wania 2005 Compilation, Evaluation, and Selection of Physical-Chemical Property Data for Organochlorine Pesticides (Shen and Wania, 2005)

^c Xiao et al. 2004 Compilation, Evaluation, and Selection of Physical-Chemical Property Data for α-, β-, and γ-Hexachlorocyclohexane (Xiao et al., 2004)

^d EPISuite

^e Beyer et al. 2003 Temperature Dependence of the Characteristic Travel Distance (Beyer et al., 2003)

^f Wania and Su 2004 Quantifying the Global Fractionation of Polychlorinated Biphenyls (Wania and Su, 2004)

^g ppLFER – UFZ LSER experimental predictors

^h Breivik and Wania 2002 Evaluating a Model of the Historical Behavior of Two Hexachlorocyclohexanes in the Baltic Sea Environment (Breivik and Wania, 2002)

¹Schenker et al. 2005 Improving Data Quality for Environmental Fate Models: A Least-Squares Adjustment Procedure for Harmonizing Physicochemical Properties of Organic Compounds (Schenker et al., 2005)

^k Wania and Daly 2002 Estimating the contribution of degradation in air and deposition to the deep sea to the global loss of PCBs (Wania and Daly, 2002)

References

- Baskaran, S., Podagatlapalli, A., Sangion, A., Wania, F., 2023. Predicting the Temperature Dependence of the Octanol–Air Partition Ratio: A New Model for Estimating ΔUOA. J. Solution Chem. 52, 51–69. https://doi.org/10.1007/s10953-022-01214-7
- Beyer, A., Wania, F., Gouin, T., Mackay, D., Matthies, M., 2003. Temperature dependence of the characteristic travel distance. Environ. Sci. Technol. 37, 766–771. https://doi.org/10.1021/es025717w
- Breivik, K., Wania, F., 2002. Evaluating a model of the historical behavior of two hexachlorocyclohexanes in the Baltic Sea environment. Environ. Sci. Technol. 36, 1014–1023. https://doi.org/10.1021/es001971h
- Harner, T., Bidleman, T.F., 1998. Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environ. Sci. Technol. 32, 1494–1502. https://doi.org/10.1021/es970890r

Lei, Y.D., Wania, F., 2004. Is rain or snow a more efficient scavenger of organic chemicals? Atmos. Environ. 38, 3557–3571. https://doi.org/10.1016/j.atmosenv.2004.03.039

- Li, N., Wania, F., Lei, Y.D., Daly, G.L., 2003. A Comprehensive and Critical Compilation, Evaluation, and Selection of Physical-Chemical Property Data for Selected Polychlorinated Biphenyls. J. Phys. Chem. Ref. Data 32, 1545–1590. https://doi.org/10.1063/1.1562632
- Schenker, U., Macleod, M., Scheringer, M., Hungerbühler, K., 2005. Improving data quality for environmental fate models: A least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds. Environ. Sci. Technol. 39, 8434–8441. https://doi.org/10.1021/es0502526
- Shen, L., Wania, F., 2005. Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides. J. Chem. Eng. Data 50, 742–768. https://doi.org/10.1021/je049693f
- Wania, F., Daly, G.L., 2002. Estimating the contribution of degradation in air and deposition to the deep sea to the global loss of PCBs. Atmos. Environ. 36, 5581–5593. https://doi.org/10.1016/S1352-2310(02)00693-3
- Wania, F., Su, Y., 2004. Quantifying the global fractionation of polychlorinated biphenyls. Ambio 33, 161–168. https://doi.org/10.1579/0044-7447-33.3.161
- Xiao, H., Li, N., Wania, F., 2004. Compilation, Evaluation, and Selection of Physical-Chemical Property Data for a-, b-, and γ-Hexachlorocyclohexane. J. Chem. Eng. Data 49, 173–185. https://doi.org/10.1021/je049693f