Supplementary Information (SI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2025

Environmental Science: Processes & Impacts

Supplementary information

Improved Sampling Efficiency of Volatile Halomethoxybenzenes and Persistent Organic Pollutants Reveals Increasing Concentrations in Canadian Air

Yu-Mei Hsu¹, Fiona Wong¹, Hayley Hung^{1,*}, Chubashini Shunthirasingham¹, Wenlong Li¹, Nick Alexandrou¹, Helena Dryfhout-Clark¹, Cecilia Shin¹, Richard Park¹, Jared Chisamore¹, Artur Pajda¹, Ronald Noronha¹, Enzo Barresi², Phil Fellin³, Henrik Li³

¹ Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada

² National Laboratory for Environmental Testing, National Water Research Institute, Environment and Climate Change Canada, Burlington, Ontario, Canada

³ AirZone One Ltd., Mississauga, Ontario, Canada

*Corresponding Author:

Hayley Hung - Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin St., Toronto, Ontario, M3H 5T4, Canada; Phone: +1 416 739 5944; Email: hayley.hung@ec.gc.ca

Table of Contents

SI 1. Sample extraction and analysis method4
SI 2. Apparent enthalpy calculations for surface-air exchange
Table SI 1. Instrument detection limits (IDLs, pg) and blank averages (pg sample ⁻¹)6
Table SI 2. Descriptive statistics of volatile Halomethoxybenzenes (HMBs) and Persistent
Organic Pollutants (POPs) (pg m ⁻³) at Alert and GLB (Point Petre and Evansville) sites7
Table SI 3. Spearman correlation coefficients of HMBs at the GLB stations
Table SI 4. Spearman correlation coefficients of volatile HMBs and POPs at the Alert station9
Table SI 5. Apparent first order half-life $(t_{1/2})$ or doubling time (t_2) of volatile HMBs and POPs
at the Alert station
Table SI 6. Clausius–Clapeyron relation of HMBs at Point Petre and Evansville and calculated
enthalpy (Δ H, kJ mol ⁻¹)11
Table SI 7. HCBD air concentrations in recent years from literatures
Table SI 8. Clausius-Clapeyron relation of HCHs, HCB and PeCB at GLB sites13

Table of Figures

Figure SI 1. Map of sampling locations with photos of each site and the sampling devices14
Figure SI 2. Concentrations (pg m ⁻³) and seasonal trends (SeaTrend) of (a) DBA, (b) TBA, (c)
TeCV, (d) DAME and (e) PeCA from 2018 to 2022 at the Evansville and Point Petre stations15
Figure SI 3. Clausius- Clapeyron relation of 5 HMBs at (a) Point Petre and (b) Evansville16
Figure SI 4. Collocated volatile POP measurement comparison with the sampling media of 2
PUFs (\circ) and PUF-XAD2-PUF (\Box) at the Alert site (2014 – 2017). (a) HCBD concentrations (pg
m ⁻³) collected by 2 PUFs ([HCBD] _{PUF}) and PUF-XAD2-PUF([HCBD] _{PUF/XAD2}); (b) α-HCH; (c)
HCB; (d) PeCB concentrations (pg m ⁻³)16
Figure SI 5. Concentrations (pg m ⁻³) and seasonal trends (SeaTrend) of (a) HCBD, (b) PeCB, (c)
α -HCH, and (d) HCB from 2018 to 2022 at the Evansville and Point Petre stations17
Figure SI 6. Box plot of HCBD concentrations (a) from 2010 to 2020 at the Alert site; (b) from
2015 to 2021 in Japan (note 1). (mean*: arithmetic mean)18

Supplementary Information (SI)

SI 1. Sample extraction and analysis method

SI 1.1. Sample preparation

After sample collection, the samples were shipped to the laboratory for analysis. Before the analysis, the samples were spiked with an internal standard mixture for recovery correction which includes ${}^{13}C_{6}$ -HCBD, ${}^{13}C_{6}$ -PeCB, ${}^{13}C_{6}$ -PeCA, ${}^{13}C_{6}$ -HCB, and d₅-TBA. The average recoveries (%) ranged from 23.4% to 65.5%.

SI1.2. Sample extraction

An accelerated solvent extraction system (ASE350, Dionex) was used for the sample extraction. The extraction procedure for GLB samples began with the samples being initially extracted using hexane: acetone (6:1, v/v) over three cycles at 100°C, with a 290-second purge, a 10-minute static cycle and a rinse volume of 100%, whereas the Alert samples were extracted with hexane using the following conditions: 50°C, 5 min static cycle with a 100% flush at 800 psi. The extract was concentrated using a Turbovap system at 35°C under a gentle stream of nitrogen with isooctane as a keeper to a final volume of 1 mL. Subsequently, they were further concentrated to 0.5 mL under a stream of nitrogen and solvent-exchanged into iso-octane. The final volume of the extracts was adjusted to 0.5 ml for subsequent analysis.

SI1.3. Sample analysis

The sample extracts were analyzed using an Agilent 7010 triple quadrupole mass spectrometer (MS) with a 7890B gas chromatograph (GC) with a capillary DB-5 column (Agilent J&W Scientific, 30 m by 0.25-mm i.d. by 0.25-µm film thickness). The GC-triple quadrupole MS was operated in multiple reaction monitoring mode under electron ionization conditions.

SI 2. Apparent enthalpy calculations for surface-air exchange

To learn the possibility of emission from surface-air exchange, the Clausius-Clapeyron equation is applied as:

$$\ln \mathbf{P} = -\frac{\Delta H_{SA}}{RT} + \text{constant}$$

Where:

P is the vapor pressure of a chemical in the gas-phase (Pa),

 ΔH_{SA} represents the apparent enthalpy of surface-air exchange,

R is the gas constant, and

T is the ambient temperature (K).

To simplify this equation, we define $a=-\Delta H_{SA}/R$ as the slope, and b as the intercept, reformulating the equation as:

$$a \times \frac{1000}{T} + b$$

By applying the measured values of ln P and T, the linear relationship can be determined, yielding the slope a and intercept b. The apparent enthalpy ΔH_{SA} is then calculated using:

 $\Delta H_{SA} = -a \times R$

Where ΔH_{SA} represents the apparent enthalpy of surface-air exchange (kJ mol⁻¹),

R is the gas constant (8.314 J mol⁻¹).

Note that the factor of 1000 in the equation accounts for the unit conversion between ΔH_{SA} (kJ) and R (J).

	G	ireat Lakes Ba	Alert			
Chemicals	ID	DL	Blank a	verage	IDL	Blank average
	2019-2021	2022	Point Petre	Evansville		2009-2020
unit	pg	pg	pg sample ⁻¹		pg	pg sample ⁻¹
DBA	6.82×10 ⁻²	5.79×10-1	68.1	223	30.8	41.3
TBA	1.77×10 ⁻¹	7.26×10 ⁻¹	558	959	76.5	347
TeCV	1.85×10 ⁻¹	5.54×10 ⁻¹	<idl< td=""><td><idl< td=""><td>52.5</td><td>26.1</td></idl<></td></idl<>	<idl< td=""><td>52.5</td><td>26.1</td></idl<>	52.5	26.1
DAME	1.72×10 ⁻¹	6.63×10 ⁻¹	445	1880	21.7	296
PeCA	1.12×10 ⁻¹	3.26×10 ⁻¹	6230	1370	-	-
HCBD	3.06×10-3	1.50×10-1	924	1570	9.22	3080
α-НСН	7.54×10 ⁻²	9.65×10 ⁻²	4.28	13.0	27.4	54.5
ү-НСН	5.78×10 ⁻²	6.77×10 ⁻²	50.1	152	-	-
НСВ	6.97×10 ⁻²	1.23×10 ⁻¹	1420	282	12.8	586
PeCB	2.11×10-2	1.93×10 ⁻¹	2060	466	5.53	244

Table SI 1. Instrument detection limits (IDLs, pg) and blank averages (pg sample⁻¹)

8	compounds	mean	SD*	median	max	25%	75%	DF(%) [†]	min
Alert (2009 to January 2021) n [‡] =229									
HMBs	DBA	3.26	3.15	2.67	18.2	0.530	4.83	83.9	-
	TBA	17.5	16.6	12.2	75.6	4.87	25.8	100	0.0975
	TeCV	2.54	4.56	1.26	36.3	-	3.10	67.4	-
	DAME	30.8	31.5	21.3	256	11.7	35.6	100	1.48
POPs	HCBD	695	738	384	3600	177	971	100	16.8
	α-HCH	3.45	2.84	2.61	16.3	1.51	4.49	98.3	-
	HCB	47.3	22.9	47.9	119	29.2	64.0	100	5.03
	PeCB	14.3	8.28	13.0	42.1	8.17	18.8	100	1.38
	P	oint Petre	e, GLB (O	ctober 201	8 to Decer	nber 2022) n=36		
HMBs	DBA	24.1	26.8	13.5	132	8.12	33.8	94.4	-
	TBA	51.2	38.1	41.5	148	19.4	71.1	100	4.77
	TeCV	5.74	8.75	2.16	39.1	0.00	8.41	58.3	-
	DAME	224	290	100	1490	48.8	289	100	16.2
	PeCA	81.9	104	49.1	382	8.67	108	80.6	-
POPs	HCBD	284	397	111	1810	64.9	391	97.2	-
	α-HCH	1.78	0.816	1.85	3.84	1.35	2.18	100	0.34
	γ-HCH	0.738	0.797	0.479	3.88	0.203	0.907	97.2	-
	HCB	45.9	35.8	41.4	154	15.5	64.8	100	7.35
	PeCB	23.9	17.4	21.6	75.5	9.49	35.8	100	0.676
		Evansvil	le, GLB (I	May 2019	to Decemb	ber 2022) r	i=31		
HMBs	DBA	12.1	19.5	4.14	96.8	1.08	16.6	81.0	-
	TBA	21.1	21.1	10.5	71.4	5.64	34.5	100	2.42
	TeCV	1.82	2.23	1.21	8.93	0.00	2.87	65.0	-
	DAME	56.2	48.3	53.9	185	14.9	74.2	100	4.75
	PeCA	15.1	16.5	10.6	73.3	5.35	16.9	90.3	-
POPs	HCBD	468	496	304	2150	210	476	100	74.6
	α-HCH	1.42	1.04	0.993	4.23	0.667	1.86	100	0.333
	ү-НСН	0.935	1.21	0.613	5.60	0.231	1.13	83.9	-
	HCB	17.2	17.6	7.61	64.3	6.28	19.8	100	2.63
	PeCB	16.5	12.7	9.94	46.9	6.90	23.1	100	3.83

Table SI 2. Descriptive statistics of volatile Halomethoxybenzenes (HMBs) and Persistent Organic Pollutants (POPs) (pg m⁻³) at Alert and GLB (Point Petre and Evansville) sites

SD: standard deviation

[†] DF(%): detection frequency, concentrations higher than the instrument detection limits and blank samples.

[‡] n= number of samples.

		DBA	TBA	TeCV	DAME				
Point Petre (n=36)									
	Spearman Corr.	0.507							
TBA	p-value	1.62×10 ⁻³							
	Spearman Corr.	0.334	9.35×10 ⁻³						
TeCV	p-value	4.67×10-2	9.57×10 ⁻¹						
	Spearman Corr.	0.665	0.667	6.44×10 ⁻²					
DAME	p-value	1.0×10-4	1.0×10-4	7.09×10-1					
	Spearman Corr.	0.484	0.476	0.120	0.691				
PeCA	p-value	2.81×10 ⁻³	3.35×10-3	0.484	<1.0×10 ⁻⁴				
	1	Evans	ville (n=31)						
	Spearman Corr.	0.140							
TBA	p-value	0.453							
	Spearman Corr.	0.462	-0.522						
TeCV	p-value	8.89×10 ⁻³	2.61×10 ⁻³						
	Spearman Corr.	0.545	0.534	6.85×10 ⁻²					
DAME	p-value	1.53×10-3	1.96×10-3	0.714					
	Spearman Corr.	0.217	0.447	-9.10×10-2	0.645				
PeCA	p-value	0.242	1.17×10 ⁻²	0.626	9.07×10-5				

Table SI 3. Spearman	correlation	coefficients	of HMBs	at the GL	B stations
----------------------	-------------	--------------	---------	-----------	------------

Statistically significant correlations (p<0.05) are displayed in **bold**.

2009-Jar	n 2021 (n=229)	T (K)	DBA	TBA	TeCV	DAME	HCBD	α-HCH	HCB
DBA	Spearman Corr.	0.103	1						
	p-value	0.123							
TBA	Spearman Corr.	0.0495	0.841	1					
	p-value	0.462	9.53×10 ⁻⁶¹						
TeCV	Spearman Corr.	-0.584	0.237	0.340	1				
	p-value	6.65×10 ⁻²²	3.55×10-4	1.93×10 ⁻⁷					
DAME	Spearman Corr.	-0.133	0.457	0.636	0.547	1			
	p-value	4.65×10 ⁻²	7.42×10 ⁻¹³	2.07×10 ⁻²⁶	9.82×10 ⁻¹⁹				
HCBD	Spearman Corr.	-0.114	0.168	0.352	0.271	0.361	1		
	p-value	9.21×10 ⁻²	1.25×10 ⁻²	8.43×10 ⁻⁸	4.62×10 ⁻⁵	4.07×10 ⁻⁸			
α-HCH	Spearman Corr.	-0.247	0.188	0.305	0.504	0.740	0.0273	1	
	p-value	1.88×10-4	4.77×10 ⁻³	3.55×10-6	7.46×10 ⁻¹⁶	1.01×10 ⁻³⁹	0.687		
HCB	Spearman Corr.	-0.291	0.233	0.444	0.498	0.777	0.452	0.728	1
	p-value	9.44×10 ⁻⁶	4.43×10-4	3.25×10 ⁻¹²	2.01×10 ⁻¹⁵	5.09×10 ⁻⁴⁶	1.79×10 ⁻¹²	2.78×10 ⁻³⁸	
PeCB	Spearman Corr.	-0.193	0.161	0.352	0.320	0.464	0.650	0.404	0.752
	p-value	3.79×10 ⁻³	1.63×10-2	6.93×10 ⁻⁸	1.08×10-6	3.46×10 ⁻¹³	9.31×10 ⁻²⁸	3.62×10 ⁻¹⁰	7.40×10 ⁻⁴²

Table SI 4. Spearman correlation coefficients of volatile HMBs and POPs at the Alert station

Statistically significant correlations (p<0.05) are displayed in **bold**.

species	slope	p	$t_{1/2} (or t_2)^*$	trend
DBA	0.0959	6.68×10 ⁻⁴	7.23	increasing
ТВА	0.124	5.78×10 ⁻⁶	5.58	increasing
DAME	0.0648	4.04×10 ⁻⁴	10.7	increasing
HCBD	0.267	1.21×10 ⁻⁴³	2.60	increasing
				Not statistically
α-HCH	-0.0205	2.54×10 ⁻¹	-33.8	significant
α-ΗCH (2009-2015)	-0.350	1.78×10 ⁻¹⁵	-1.98	decreasing
α-ΗCH (2016-2020)	0.167	1.02×10-3	4.14	increasing
НСВ	0.0427	2.11×10 ⁻³	16.3	increasing
HCB (2009-2015)	-0.119	3.49×10-4	-5.81	decreasing
HCB (2016-2020)	0.230	5.25×10 ⁻¹⁰	3.02	increasing
РеСВ	0.108	5.46×10 ⁻¹⁴	6.42	increasing

Table SI 5. Apparent first order half-life $(t_{1/2})$ or doubling time (t_2) of volatile HMBs and POPs at the Alert station

^{*} $t_{1/2}$ (or t_2): negative value is $t_{1/2}$ (half-life time) or positive value is for t_2 (doubling time).

species	a (slope)	P-value	Pearson R [*]	$\Delta_{\rm SA}{\rm H}^\dagger$	$\Delta_{AW}H^{\ddagger}$	$\Delta_{OA}H^{\S}$	$\Delta_{ m SA}{ m H}^{**}$	$\Delta_{\rm SA} {\rm H}^{\dagger\dagger}$	$\Delta_{VAP}H^{\ddagger\ddagger}$	
Point Petre										
DBA	-7.83±1.45	6.39×10 ⁻⁶	-0.690	65.1±12.1	47.0	-61.6	-	29.7±7.2 (Råö);	51.2±3.0	
								23.9±7.2 (Pallas)		
TBA	-5.10±1.33	5.27×10 ⁻⁴	-0.549	42.4±11.1	49.7	-68.4	32.9 ± 3.6	39.8±6.5 (Råö);	51.6±3.0	
							(Toronto)	12.3±5.3 (Pallas)		
DAME	-10.0±1.14	2.68×10 ⁻¹⁰	-0.834	83.2±9.44	63.4	-77.2	74.7 ± 3.0	47.3±9.4 (Råö);	55.0±3.0	
							(Toronto)	61.4±9.4 (Pallas)		
PeCA	-5.76±2.41	0.0239	-0.419	47.9±20.0	44.4	-71.5	71.2 ± 4.5	-	54.1±3.0	
							(Toronto)			
TeCV	-8.83±1.46	8.08×10-6	-0.811	73.4±12.1	63.4	-77.2	71.7 ± 3.0	43.5±9.2 (Råö);	53.8±3.0	
							(Toronto)	31.7±8.2 (Pallas)		
]	Evansville					
DBA	-7.73±1.24	2.30×10 ⁻⁶	-0.793	64.3±10.3	47.0	-61.6	-	29.7±7.2 (Råö);	51.2±3.0	
								23.9±7.2 (Pallas)		
TBA	-2.78±1.42	5.89×10 ⁻²	-0.342	23.1±11.8	49.7	-68.4	32.9 ± 3.6	39.8±6.5 (Råö);	51.6±3.0	
							(Toronto)	12.3±5.3 (Pallas)		
DAME	-7.40±0.79	2.72×10 ⁻¹⁰	-0.867	61.5±6.56	63.4	-77.2	74.7 ± 3.0	47.3±9.4 (Råö);	55.0±3.0	
							(Toronto)	61.4±9.4 (Pallas)		
PeCA	-4.74±1.18	4.40×10 ⁻⁴	-0.619	39.4±9.81	44.4	-71.5	71.2 ± 4.5	-	54.1±3.0	
							(Toronto)			
TeCV	-5.31±0.96	2.91×10 ⁻⁵	-0.794	44.1±7.98	63.4	-77.2	71.7 ± 3.0	43.5±9.2 (Råö);	53.8±3.0	
							(Toronto)	31.7±8.2 (Pallas)		

Table SI 6. Clausius–Clapeyron relation of HMBs at Point Petre and Evansville and calculated enthalpy (ΔH, kJ mol⁻¹)

^{*} Person R: Pearson Correlation coefficient

[†] Δ_{SA} H: apparent enthalpy of surface-air exchange, calculated in this study

 $^{^{\}ddagger}\Delta_{AW}$ H: enthalpy of air-water exchange. (1. F. Zhan, C. Shunthirasingham, Y. Li, J. Oh, Y. D. Lei, A. Ben Chaaben, A. Dalpé Castilloux, Z. Lu, K. Lee, F. A. P. C. Gobas, N. Alexandrou, H. Hung and F. Wania, Sources and environmental fate of halomethoxybenzenes, *Sci. Adv.*, 2023, **9**, eadi8082, DOI:

^{10.1126/}sciadv.adi8082.)

 $[\]Delta_{OA}$ H: enthalpy of octanol-air exchange (1. Ibid.)

^{**} Δ_{SA} H: apparent enthalpy of surface-air exchange in Toronto (1. Ibid.)

^{††} Δ_{SA} H: apparent enthalpy of surface-air exchange (2. T. Bidleman, A. Andersson, E. Brorström-Lundén, S. Brugel, L. Ericson, K. Hansson and M.

Tysklind, Halomethoxybenzenes in air of the Nordic region, Environ. Sci. Ecotechnology, 2023, 13, 100209, DOI: 10.1016/j.ese.2022.100209.)

^{‡‡} Δ_{VAP} H: enthalpy of vaporization (<u>https://www.chemspider.com/</u>)

Location	Concentrations	Sampling Method	Year of sampling	References
Cape Hedo, Okinawa, Japan	330 – 2900 pg m ⁻³	quarts fiber filter, PUF and	2009-2016	Takasuga T. et
(background site)		active carbon fiber filter		al. ³
Cape Hedo, Okinawa Japan	mean: 3000 pg m ⁻³	quarts fiber filter, PUF and	2016-2018	UNEP ⁴
Fukue Goto, Japan	mean: 3300 pg m ⁻³	active carbon fiber filter	2016-2018	
Jinan	$360 \pm 170 \text{ ng m}^{-3*}$	fused silica-lined stainless	June 2017 to April	Yang et al. ⁵
Tai'an	$380 \pm 300 \text{ ng m}^{-3}$	steel vacuum canisters for	2018	
Mount Tai	$330 \pm 220 \text{ ng m}^{-3}$	collection; GC-MS for		
Mixed factory park, Weifang	$810 \pm 350 \text{ ng m}^{-3}$	analysis		
Rubber plant, Guangrao	$630 \pm 220 \text{ ng m}^{-3}$	(US EPA TO-14 and TO-		
municipal solid waste landfill area	$790 \pm 90 \text{ ng m}^{-3}$	15 methods)		
Latin America and Caribbean	<20-120 pg m ⁻³	Passive sampler		Rauert et al. ⁶
region				
tetrachloroethylene factory	1.46–1170 μg m ⁻³	activated charcoal tube	30 August to 4	Liu et al. ⁷
(acetylene method), Inner			September, 2018	
Mongolia Autonomous Region,				
China				
tetrachloroethylene factory	1.96–5530 μg m ⁻³			
(tetrachloride transformation)				
method, Shandong China				
Near a chlor-alkali plant	0.21±0.31 μg m ⁻³	Stainless steel sorbent	2013-2015	van Drooge et al.
Tarragona, Spain		cartridge		8
landfill/compost plant, Shanghai,	ND-146±49.8 µg m ⁻³	Tedlar® bag		Cheng et al. ⁹
China	(Detection Limit=3.1 µg			
	m ⁻³). Geomean= $8.7 \ \mu g \ m^{-3}$			

 Table SI
 7. HCBD air concentrations in recent years from literatures

^{*} Converted from ppt. 1 ppt HCBD = 10.6 ng m^{-3} HCBD (298 K, 101325 Pa)

Chemical	a (slope)	P-value	Pearson R*	$\Delta_{SA}H$ (kJ mol ⁻¹)				
	1	Evansville	1	1				
α-НСН	-3.38±0.759	1.15×10-4	-0.638	28.1±6.31				
ү-НСН	-4.50±1.72	1.51×10 ⁻²	-0.471	37.4±14.3				
НСВ	-3.01±1.18	1.62×10-2	-0.428	25.0±9.81				
РеСВ	-3.73±0.879	2.03×10-4	-0.619	31.1±7.31				
	Point Petre							
α-НСН	-3.60±0.796	7.03×10 ⁻⁵	-0.613	30.0±6.62				
ү-НСН	-6.16±1.46	1.79×10-4	-0.592	51.2±12.1				
НСВ	-4.57±1.27	1.00×10 ⁻³	-0.525	38.0±10.6				
PeCB	-5.97±1.75	1.67×10 ⁻³	-0.505	49.6±14.5				

Table SI 8. Clausius-Clapeyron relation of HCHs, HCB and PeCB at GLB sites

^{*} Person R: Pearson Correlation coefficient

Figure SI 1. Map of sampling locations with photos of each site and the sampling devices.

Figure SI 2. Concentrations (pg m⁻³) and seasonal trends (SeaTrend) of (a) DBA, (b) TBA, (c) TeCV, (d) DAME and (e) PeCA from 2018 to 2022 at the Evansville and Point Petre stations.

Figure SI 3. Clausius- Clapeyron relation of 5 HMBs at (a) Point Petre and (b) Evansville.

Figure SI 4. Collocated volatile POP measurement comparison with the sampling media of 2 PUFs (\circ) and PUF-XAD2-PUF (\Box) at the Alert site (2014 – 2017). (a) HCBD concentrations (pg m⁻³) collected by 2 PUFs ([HCBD]_{PUF}) and PUF-XAD2-PUF([HCBD]_{PUF/XAD2}); (b) α -HCH; (c) HCB; (d) PeCB concentrations (pg m⁻³).

Figure SI 5. Concentrations (pg m⁻³) and seasonal trends (SeaTrend) of (a) HCBD, (b) PeCB, (c) α -HCH, and (d) HCB from 2018 to 2022 at the Evansville and Point Petre stations.

Figure SI 6. Box plot of HCBD concentrations (a) from 2010 to 2020 at the Alert site; (b) from 2015 to 2021 in Japan (*note 1*). (mean*: arithmetic mean)

Note 1. HCBD concentrations in Japan.

HCBD concentrations were measured in Japan by Ministry of the Environment, Japan since 2015. Each time, 24-hour samples were collected consecutively for three days at a single site. Sampling was conducted at 34-37 sites across the country, with a total of 102 to 111 samples taken each sampling event. The available data for comparison is from the warm season sampling event (September or October).

Data source:

Geometric mean and median: ¹⁰ (https://www.env.go.jp/chemi/kurohon/en/http2022e/index.html) 2017 HCBD concentration: ¹¹ (https://www.env.go.jp/chemi/kurohon/en/http2018e/index.html) 2018 HCBD concentration: ¹² (https://www.env.go.jp/chemi/kurohon/en/http2019e/index.html) 2019 HCBD concentration: ¹³ (https://www.env.go.jp/chemi/kurohon/en/http2020e/index.html) 2020 HCBD concentration: ¹⁴ (https://www.env.go.jp/chemi/kurohon/en/http2021e/index.html) 2021 HCBD concentration: ¹⁰ (https://www.env.go.jp/chemi/kurohon/en/http2022e/index.html)

References

- 1. F. Zhan, C. Shunthirasingham, Y. Li, J. Oh, Y. D. Lei, A. Ben Chaaben, A. Dalpé Castilloux, Z. Lu, K. Lee, F. A. P. C. Gobas, N. Alexandrou, H. Hung and F. Wania, Sources and environmental fate of halomethoxybenzenes, *Sci. Adv.*, 2023, **9**, eadi8082, DOI: 10.1126/sciadv.adi8082.
- T. Bidleman, A. Andersson, E. Brorström-Lundén, S. Brugel, L. Ericson, K. Hansson and M. Tysklind, Halomethoxybenzenes in air of the Nordic region, *Environ. Sci. Ecotechnology*, 2023, 13, 100209, DOI: 10.1016/j.ese.2022.100209.
- 3. Takasuga T., Nakano T. and Shibata Y., Hexachlorobutadiene (HCBD) as predominant POPs in ambient air : All POPs levels and trends at frequent monitoring super-sites of Japan, *Journal*, 2018, **80**, 729-732.
- 4. UNEP, *Third regional monitoring report: Asia-Pacific region. Global monitoring plan for persistent organic pollutants under the Stockholm Convention article 16 on effectiveness evaluation.*, Secretariat of the Basel, Rotterdam and Stockholm conventions, United Nations Environment Programme, Geneva, Switzerland, 2021.
- 5. M. Yang, H. Mao, H. Li, F. Yang, F. Cao and W. Yan, Quantifying concentrations and emissions of hexachlorobutadiene a new atmospheric persistent organic pollutant in northern China, *Environ. Res.*, 2023, **216**, 114139, DOI: 10.1016/j.envres.2022.114139.
- C. Rauert, T. Harner, J. K. Schuster, A. Eng, G. Fillmann, L. E. Castillo, O. Fentanes, M. V. Ibarra, K. S. B. Miglioranza, I. M. Rivadeneira, K. Pozo and B. H. Aristizábal Zuluaga, Air monitoring of new and legacy POPs in the Group of Latin America and Caribbean (GRULAC) region, *Environ. Pollut.*, 2018, 243, 1252-1262, DOI: 10.1016/j.envpol.2018.09.048.
- 7. C. Liu, J. Guo, M. Liu, J. Liu and L. Zhang, Levels, distributions, and potential risks of hexachlorobutadiene from two tetrachloroethylene factories in China, *Int. J. Environ. Res. Public Health*, 2023, **20**, 5107, DOI: 10.3390/ijerph20065107.
- 8. B. L. van Drooge, E. Marco and J. O. Grimalt, Atmospheric pattern of volatile organochlorine compounds and hexachlorobenzene in the surroundings of a chlor-alkali plant, *Sci. Total Environ.*, 2018, **628-629**, 782-790, DOI: 10.1016/j.scitotenv.2018.02.088.

- 9. Z. Cheng, Z. Sun, S. Zhu, Z. Lou, N. Zhu and L. Feng, The identification and health risk assessment of odor emissions from waste landfilling and composting, *Sci. Total Environ.*, 2019, **649**, 1038-1044, DOI: 10.1016/j.scitotenv.2018.08.230.
- 10. Chemicals in the environment. Report on environmental survey and monitoring of chemicals in fy2021, Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment Government of Japan, Tokyo, Japan, 2023
- 11. *Chemicals in the environment. Report on environmental survey and monitoring of chemicals in fy2017*, Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment Government of Japan, Tokyo, Japan, 2019.
- 12. Chemicals in the environment. Report on environmental survey and monitoring of chemicals in fy2018, Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment Government of Japan, Tokyo, Japan, 2020.
- 13. Chemicals in the environment. Report on environmental survey and monitoring of chemicals in fy2019, Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment Government of Japan, Tokyo, Japan, 2021
- 14. *Chemicals in the environment. Report on environmental survey and monitoring of chemicals in fy2020*, Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment Government of Japan, Tokyo, Japan, 2022