Supplementary Information (SI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2025

Supporting Information for

Microplastics in surficial sediments from UK rivers and canals: seasonal

and spatial variation and relationships with concentrations of

organophosphate esters

Simeon Onoja*, Mohamed Abou-Elwafa Abdallah, Stuart Harrad

School of Geography, Earth, and Environmental Sciences,

University of Birmingham,

Birmingham B15 2TT,

UK

*Corresponding author: chogu@mail.com

Laboratory procedure for analysis of sediment samples for OPEs.

Samples were extracted in accordance with the method of (Brommer et al., 2012) with slight modifications. One (1) g of sediment was mixed in a clean dry test tube with 1 g of copper powder and spiked with 10 ng of internal (surrogate) standard mixture (d_{12} -TCEP, d_{12} -TDCPP, and d_{15} -TPhP). The samples were then extracted by vortexing for 1 minute with 5 mL of hexane: acetone (1:1 v/v), before ultrasonicating for 10 minutes at 30 °C. Samples were centrifuged at 3500 rpm for 3 min and the supernatant collected in a clean dry test tube. The steps from extraction to collection of supernatants were repeated twice and the combined extracts evaporated under a gentle stream of nitrogen to ~1 mL. The crude extracts were loaded onto pre-conditioned Florisil cartridges (conditioned with 2 x 3 mL of hexane) and the extract washed with 10 mL of hexane before elution of OPEs with 8 mL of ethyl acetate. The eluate was then collected in a clean dry test tube and evaporated under a gentle stream of nitrogen until incipient dryness. The concentrate was then reconstituted in 100 µL of toluene containing 250 pg/uL of PCB 62 as recovery determination (syringe) standard before transferring into an inserted vial and stored in a freezer ready for GC-MS analysis.

Analysis of OPEs was conducted on an Agilent 5975C GC coupled to an Agilent 5975C MSD fitted with a 30 m DB-5 MS column (0.25 mm ID, 0.25 µm film thickness) and operated in electron ionisation mode (EI) (Restek, USA). The carrier gas was helium at a constant flow rate of 1.0 mL/min. The injector temperature was set at 290 °C in split-less mode and the MS operated with a solvent delay of 5 minutes. Temperatures of the ion source, quadrupole and interface were set at: 230 °C, 150 °C and 300 °C respectively. The GC temperature programme was 65 °C, hold for 0.75 min, ramp 20 °C/min to 250 °C, hold for 1 min, ramp 5 °C/min to 260 °C, hold for 0 min, ramp 30 °C/min to 305 °C, and hold for 1 min. TnBP, TCEP, and TCIPP were quantified against d₂₇.TnBP, TDCIPP, TPHP, EHDPP, and TMPP against d₁₂.TPHP, while TDCIPP was quantified against d₁₂-TDCIPP. The dwell time for each ion was 30

milliseconds.

To ensure accuracy and precision of the analytical data generated during this study, the following measures were taken. A full five-point calibration comprising concentrations of each individual native OPE of 50, 100, 250, 500, and 1,000 pg/µL was conducted (with relative standard deviation (RSD) values for the relative response factors < 6.5% for all target OPEs. Concentrations of the internal standards in each calibration standard were 30 ng/ μ L and as an indication of the high efficiency of the extraction method, good recoveries (>77%) of the internal standards (d₁₂-TCEP, d₁₅-TPHP, and d₁₂-TDCIPP) were obtained in all samples. Two procedural blanks (comprising 1 g Na₂SO₄ treated as a sediment sample), and one standard reference material (SRM 1944) were analysed for each batch of 20 sediment samples. Low concentrations (5-20% of those found in samples from the same batch) of TCEP and TBOEP were detected in the procedural blanks and the average concentration detected in the blanks were subtracted from those in all samples from that batch. While to our knowledge no other data exist on OPEs in SRM1944 against which we can compare the accuracy of our method, our good internal standard recoveries and satisfactory blank levels provide reassurance of the quality of our data. The limit of detection (LOD) and the limit of quantification (LOQ) were calculated as the concentrations of analyte corresponding to signal to noise ratios of 3 and 10, respectively, except for TCEP and TBOEP where LOD and LOQ were calculated as 3 and 10 times the standard deviation of the blank levels.

Quality assurance and Quality control (QA/QC) for Analysis of Microplastics

Apart from ensuring the use of non-plastic materials during sampling and previous validation studies, other measures were taken to avoid contamination and ensure data accuracy (Onoja et al., 2022). These include a strict use of 100% cotton lab coats and rinsing all equipment before use under fast flowing tap water and then 3 to 4 times with deionised (DI) water (Wen et al., 2018, Yuan et al., 2019, Nel et al., 2020). Equipment was also covered with aluminium foil

throughout the process and the workspace was always cleaned with 70% alcohol before use (Wen et al., 2018). A procedural blank which involved extracting an additional set-up of only DI water without sediment was run along each batch to account for background contamination. The number of particles (fibres) found in the blanks ranged between 0 and 1 and was therefore not used in the final count.

Figure S 1. Flow chart of the procedures for analysis of sediment samples for MPs and OPEs

Figure S2: Fragment and Fibre identification tree (Nel et al., 2021, Hidalgo-Ruz et al., 2012, Catarino et al., 2018, Eerkes-Medrano et al., 2015,

Nor

Obbard,

2014).

Figure S3: Pellet (A), Fragment (B), and Fibre (C) as identified by a Nikon SMZ-1000 stereo

microscope.

Table S1: Calculation of Limit of Detection (LOD) and Limit of Quantification (LOQ) based on the average number of particles (fibres only) isolated during blank analysis (Horton et al., 2021).

Polyme	mean narticles/50 Kg dw ⁻¹	SD	LOD (mean + 3 SD)	LOO (mean + 10 SD)
PVC	0.00	0.00	0.00	0.00
РР	5.00	0.31	5.93	8.10
PET	4.70	0.35	5.75	8.20
PE	3.80	0.43	5.09	8.10
	0.00	0.00	0.00	0.00
PS				

Sampling Year/Month	Sampling Point	Mean MPs/30g (dw)	Mean MPs/kg	Median Particle/kø	Average length (um)	Average Area (um ²)
	I	RI	VER SOWE	T ut tiete, ng	iongen (µm)	/ II cu (µIII)
2019-12	Downstream	4	133	83	390	67518
2019-12	Upstream	3	100	67	195	35877
2020-01	Downstream	5	167	100	291	45449
2020-01	Upstream	3	100	2	240	46463
2020-02	Downstream	7	233	74	342	52702
2020-02	Upstream	3	100	2	206	32228
2020-03	Downstream	8	267	167	445	91915
2020-03	Upstream	3	100	67	285	57049
2020-07	Downstream	1	33	33	394	59954
2020-07	Upstream	3	100	67	173	17992
2020-08	Downstream	9	300	167	395	174170
2020-08	Upstream	5	167	133	302	50094
2020-09	Downstream	5	167	100	634	31087
2020-09	Upstream	2	67	33	202	21152
2020-10	Downstream	2	67	33	270	31410
2020-10	Upstream	2	67	33	940	198025
2020-11	Downstream	3	100	67	591	66806
2020-11	Upstream	3	100	67	276	72275
2021-04	Downstream	3	100	67	596	55395
2021-04	Upstream	2	67	2	1196	6483
2021-05	Downstream	2	67	33	180	19821
2021-05	Upstream	4	133	67	482	54254
2021-06	Downstream	2	67	50	114	634
2021-06	Upstream	2	67	33	58	2278
Min		1	33	2	58	634
Max		9	300	167	1196	198025
Average		4	119	64	383	53793
Median		3	100	67	296	48279

Table S2. MP abundance in River Sowe, River Tame, River Severn and Worcester-Birmingham canal.

River Tame								
2019-12	Downstream	9	300	167	102	8989		
2019-12	Upstream	4	133	83	392	126719		
2020-01	Downstream	11	367	200	281	122656		
2020-01	Upstream	6	200	117	327	148300		
2020-02	Downstream	9	300	200	368	113823		
2020-02	Upstream	3	100	67	264	42173		
2020-03	Downstream	9	300	167	433	118277		
2020-03	Upstream	8	267	133	406	172851		
2020-07	Downstream	7	233	133	438	303730		

2020-07	Upstream	6	200	100	303	24131
2020-08	Downstream	8	267	4	307	53046
2020-08	Upstream	8	267	133	442	229627
2020-09	Downstream	5	167	100	336	60709
2020-09	Upstream	5	167	100	679	274954
2020-10	Downstream	3	100	67	888	6618607
2020-10	Upstream	5	167	100	346	303314
2020-11	Downstream	5	167	100	1382	2499860
2020-11	Upstream	7	233	4	1223	1175559
2021-04	Downstream	5	167	100	829	212205
2021-04	Upstream	4	133	83	314	63537
2021-05	Downstream	5	167	100	89	1242
2021-05	Upstream	3	100	67	39	729
2021-06	Downstream	5	167	100	118	2128
2021-06	Upstream	3	100	67	105	2008
Min		3	100	4	39	729
Max		11	367	200	1382	6618607
Average		6	199	104	434	528299
Median		5	167	100	341	120466

	River Severn								
2019-12	Downstream	11	367	200	498	274579			
2019-12	Upstream	8	267	133	624	390182			
2020-01	Downstream	13	433	233	457	249138			
2020-01	Upstream	6	200	133	654	278850			
2020-02	Downstream	7	233	4	665	135997			
2020-02	Upstream	4	133		793	270302			
2020-03	Downstream	8	267	167	669	234610			
2020-03	Upstream	7	233	167	525	194153			
2020-07	Downstream	2	67	33	76	2755			
2020-07	Upstream	6	200	100	570	126521			
2020-08	Downstream	7	233	133	774	159720			
2020-08	Upstream	5	167	100	1169	122243			
2020-09	Downstream	7	233	133	343	65765			
2020-09	Upstream	6	200		916	162562			
2020-10	Downstream	6	200	100	413	120429			
2020-10	Upstream	6	200	100	555	179088			
2020-11	Downstream	4	133	67	488	111640			
2020-11	Upstream	3	100	67	662	202881			
2021-04	Downstream	2	67	33	373	62205			
2021-04	Upstream	3	100	67	561	161829			
2021-05	Downstream	4	133	67	61	2084			
2021-05	Upstream	4	133	83	74	1165			
2021-06	Downstream	2	67	33	49	1772			
2021-06	Upstream	2	67	33	48	2229			
Min		2	67	4	48	1165			

Max	13	433	233	1169	390182
Average	6	185	99	501	146362
Median	6	200	100	540	147858

		Birmingham a	and Worcester	Canal		
	Worcester &					
2019-12	Birm Canal	4	133	67	251	19404
	Worcester &					
2020-01	Birm Canal	8	267	133	144	14414
	Worcester &					
2020-02	Birm Canal	8	267	133	166	10911
	Worcester &					
2020-03	Birm Canal	2	67	33	392	105097
	Worcester &					
2020-07	Birm Canal	2	67	33	1615	29928
	Worcester &					
2020-08	Birm Canal	2	67	2	629	208748
	Worcester &					
2020-09	Birm Canal	4	133	100	589	301239
	Worcester &					
2020-10	Birm Canal	3	100	67	378	66034
	Worcester &					
2020-11	Birm Canal	2	67	33	1161	269882
	Worcester &					
2021-04	Birm Canal	3	100	67	639	88388
	Worcester &					
2021-05	Birm Canal	2	67	33	42	2862
	Worcester &					
2021-06	Birm Canal	2	67	50	45	926
Min		2	67	2	42	926
Max		8	267	133	1615	301239
Average		4	117	63	504	93153
Median		3	83	58	385	47981

Figure S4. Average MP abundance in River Severn, River Sowe, River Tame and Worcester & Birmingham Canal. (Y error bars = 1 standard deviation).

Figure S5: Relative abundance of the five polymer types identified.

Figure S6a: Morphology of isolated MPs from the Worcester- Birmingham canal, River Tame, River Severn, and River Sowe.

Figure S6b: Average morphology of isolated MPs from all sampling locations over the entire period of sampling.

Figure S7: Size range of MPs at Worcester and Birmingham Canal (A), River Severn (B), River Sowe (C), and River Tame (D).

Figure S8: Distribution of Mean MPs upstream and downstream of WWTPs across all three river locations over the 12-month sampling period.

Figure S9. Abundance of MPs Upstream and Downstream of WWTPs. (Y error bars are standard deviation error bars showing variation around the mean)

Figure S10: Relative abundance of the five polymer types upstream and downstream of the target WWTPs

Figure S11: Box plots showing the distribution of fragment, fibre, and pellet length upstream and downstream.

Figure S12. Seasonal variation of MPs abundance across study locations

Table S2: UK seasons, months, notable features, and mean MP abundance at Rivers, Severn, Sowe, Tame and Worcester-Birmingham Canal

Season	Months	Notable features	Mean MPs/kg at River Severn	Mean MPs/kg at River Sowe	Mean MPs/kg at River Tame	Mean MPs/kg at W&B Canal
Summer	June to end of August	 Usually has the hottest temperatures. Sunniest days Sometimes driest season Varying rainfall as with all seasons in the UK 	133	67	206	122
Autumn	September to November	Cooler temperatureStormier weatherShorter days.	178	100	167	94
Winter	December to February	 Coldest months Shortest days Often wet and windy Frost and even snow often 	272	222	233	139
Spring	March to May	longer and warmer daysOften calm and dry	156	78	189	122

Figure S 13: Boxplots of the total number of MPs/kg for each month across all four study locations (River Severn, River Sowe, River Tame and Worcester &

Birmingham Canal

Figure S14. Relationship between MP abundance, River flow rate (i) and River level (ii) in River Severn (A), River Tame (B) and River Sowe.

Table S3: Correlation test between total MPs/kg, River level and Flow rate at River Severn

River Severn								
		Mean MPs//Kg	River Level (m)	Flow Rate (m ³ /s)				
Mean MPs//Kg	Pearson Correlation	1	.584*	.694*				
	Sig.		.046	.026				
River Level (m)	Pearson Correlation		1	.982**				
	Sig.			<.001				
River Level (m)	Pearson Correlation			1				
*. Correlation is sig	*. Correlation is significant at the 0.05 level							
**. Correlation is s	ignificant at the 0.01 leve	;]						

Table S4: Correlation test between total MPs/kg, River level and Flow rate at River Tame

River Tame								
	_	Mean MPs//Kg	River Level (m)	Flow Rate (m ³ /s)				
Mean MPs//Kg	Pearson Correlation	1	.370	.353				
	Sig.		.236	.317				
River Level (m)	Pearson Correlation		1	.993**				
	Sig.			<.001				
River Level (m)	Pearson Correlation			1				
**. Correlation is s	ignificant at the 0.01 leve	el						

Table S5: Correlation test between total MPs/kg, River level and Flow rate at River Sowe

River Sowe							
		Mean MPs//Kg	River Level (m)	Flow Rate (m ³ /s)			
Total MPs//Kg	Pearson Correlation	1	.463	.575			
	Sig.		.130	.105			
River Level (m)	Pearson Correlation		1	.953**			
	Sig.			<.001			
Mean MPs//Kg	Pearson Correlation			1			
**. Correlation is s	significant at the 0.01 leve	el					

Table S6: Correlation test between total OPE concentration in all locations and the mean particle number, median particle number, meanparticle area and median particle area in all study locations.

		TnBP	ТСЕР	TCIPP	TBOEP	EHDPP	ТМТР	TPhP	TDCIPP	$\sum_{8} OPEs$
Mean MPs	Pearson	045	144	214	309**	012	016	217*	119	326**
number	Correlation									
	Sig.	.685	.192	.051	.004	.911	.888	.047	.282	.002
Median MPs	Pearson	053	143	188	295**	.030	.002	166	135	299**
number	Correlation									
	Sig.	.635	.194	.086	.007	.787	.985	.131	.220	.006
Mean MPs	Pearson	154	193	114	139	024	019	207	188	165
Area_µm2	Correlation									
	Sig.	.161	.079	.302	.207	.830	.865	.059	.086	.134
Median MPs	Pearson	209	196	137	262*	104	114	216*	113	283**
Area_µm2	Correlation									
	Sig.	.056	.074	.213	.016	.348	.301	.049	.306	.009
**. Correlation	is significant at th	e 0.01 level								
*. Correlation is	s significant at the	0.05 level								

Figure S15: Mean organic matter content (%) upstream and downstream of River Severn, River Sowe, River Tame and Worcester & Birmingham Canal. (Y error bars = range).

Compound	Abb.	CAS No.	Chemical formula	Solubility c	VP b,c	Log Kow	Log Koc
				(mg/L, 25°C)	(Pa, 25 °C)	с	
Tris (2-chloroethyl) phosphate	ТСЕР	115-96-8	C6H12Cl3O4P	877.9	8.17	1.44	2.48
Tris (1-chloro-2- propyl)							
phosphate	TCIPP	13674-84-5	C9H18Cl3O4P	51.85	7.53×10-3	2.59	2.71
Tris (1,3-dichloro- 2-propyl)	TDCIPP	13674-87-8	C9H15Cl6O4P	1.5	3.81×10-5	3.65	2.35
phosphate							
Trimethyl phosphate	TMP	512-56-1	C3H9O4P	3.004×105	55.3	-0.65	4.35
Triethyl phosphate	TEP	78-40-0	C6H15O4P	1.115×104	22	0.8	1.68
Tripropyl phosphate	TnPP	513-08-6	C9H21O4P	826.6	3.08	1.87	2.83
Tributyl phosphate	TnBP	126-73-8	C12H27O4P	280	0.151	4	3.28
Triphenyl phosphate	TPhP	115-86-6	C18H15O4P	1.9	1.49×10-3	4.59	3.72
Tris(2-butoxyethyl) phosphate	TBOEP	78-51-3	C18H39O7P	1.963	1.65×10-4	3.75	4.38
Tris(2-ethylhexyl) phosphate	TEHP	78-42-2	C24H51O4P	1.461×10-5	1.10×10-5	9.49	6.87
2-ethylhexyl diphenyl							
phosphate	EHDPP	1241-94-7	C20H27O4P	0.06659	4.45×10-3	5.37	4.21

Table S7: Names, abbreviations and properties some common OPEs including the ones in the present study (Yin et al., 2022)

Figure S16: River Tame scatterplots for TPhP, TCIPP and TBOEP against organic matter (%) with the Pearson r and p values.

Figure S17: River Sowe scatterplots for TPhP, TCIPP and TBOEP against organic matter (%) with the Pearson r and p values.

Figure S18: River Severn scatterplots for TPhP, TCIPP and TBOEP against organic matter (%) with the Pearson r and p values.

Figure S19: Birmingham and Worcester Canal scatterplots for TPhP, TCIPP and TBOEP against organic matter (%) with the Pearson r and p values.

Worcester & Birmingham Canal								
		$\sum_{8} OPEs$	Mean particle number					
$\sum_{8} OPEs$	Pearson Correlation	1	588*					
	Sig.		.044					
Mean particles number	Pearson Correlation	588*	1					
	Sig.	.044						
*. Correlation is significant at the 0.05 level								

Table S8 Correlation test between \sum_{8} OPEs concentration and the mean particle number at the Worcester & Birmingham Canal.

Table S9 Correlation test between mean MPs/kg and mean concentration of individual target OPE at the Worcester & Birmingham Canal.

Worcester & Birmingham Canal									
		TnBP	ТСЕР	TCIPP	TBOEP	EHDPP	ТМТР	TPhP	TDCIPP
Mean MPs/kg	Pearson	297	339	433	390	411	408	352	404
(dw)	Correlation								
	Sig.	.348	.280	.160	.210	.185	.188	.262	.192
*. Correlation is signi	*. Correlation is significant at the 0.05 level								

**. Correlation is significant at the 0.01 level

Table S10 Correlation test between \sum_{8} OPEs concentration, and the mean particle number, median particle number and mean particle

area at the River Sowe.

	River Sowe	$\sum_{8} OPEs$
Mean particles number	Pearson Correlation	156
	Sig.	.466
Median Particle number	Pearson Correlation	144
	Sig.	.502
Area (μm ²)	Pearson Correlation	053
	Sig.	.806
**. Correlation is significant a	t the 0.01 level.	
*. Correlation is significant at	the 0.05 level.	

Table S11 Correlation test between mean MPs/kg and mean concentration of individual target OPEs at the River Sowe.

River Sowe									
		TnBP	TCEP	TCIPP	TBOEP	EHDPP	TMTP	TPhP	TDCIPP
Mean MPs/kg	Pearson	.483	.301	384	476	214	641*	151	.030
(dw)	Correlation								
	Sig.	.112	.342	.217	.118	.503	.025	.640	.925
*. Correlation is significant at the 0.05 level									
**. Correlation is	**. Correlation is significant at the 0.01 level								

Table S12 Correlation test between \sum_{8} OPEs concentration, and the mean particle number, median particle number, median particle area and mean particle area at River Tame

	River Tame				
Mean particles number	Pearson Correlation	444*			
	Sig.	.030			
Median Particle number	Pearson Correlation	477*			
	Sig.	.019			
Mean Particle Area_µm2	Pearson Correlation	.049			
	Sig.	.821			
Median Particle Area_µm2	Pearson Correlation	002			
	Sig.	.991			
**. Correlation is significant at the 0.01 level					
*. Correlation is significant at the	0.05 level				

Table S13 Correlation test between MPs/kg and concentration of individual target OPEs at River Tame

River Tame									
		ТВОЕР	TPhP	TnBP	ТСЕР	TCIPP	EHDPP	ТМТР	TDCIPP
Mean MPs/kg (dw)	Pearson Correlation	531	198	093	388	273	415	258	102
*. Correlation is s	Correlation Correlation <thcorrelation< th=""> <thcorrelation< th=""></thcorrelation<></thcorrelation<>								

**. Correlation is significant at the 0.01 leve

Table S14 Correlation test between \sum_{8} OPEs concentration, and the mean particle number, median particle number, and mean particle area at River Severn

Rive	$\sum_{8} OPEs$						
Mean particles number	Pearson Correlation	230					
	Sig.	.280					
Mean particle Area_µm2	Pearson Correlation	411*					
	Sig.	.046					
Median particle Area_µm2	Pearson Correlation	447*					
	Sig.	.029					
**. Correlation is significant at the 0.01 level.							
*. Correlation is significant at the 0.05 level.							

Table S15 Correlation test between mean concentration of individual target OPEs and mean MPs/kg at River Severn

River Severn									
		TnBP	ТСЕР	TCIPP	ТВОЕР	EHDPP	ТМТР	TPhP	TDCIPP
Mean	Pearson Correlation	628*	092	554	411	008	088	277	091
MPs/kg	Sig.	.029	.777	.062	.184	.979	.785	.383	.778
(dw)									
*. Correlation is significant at the 0.05.									
**. Correla	**. Correlation is significant at the 0.01 level.								

REFERENCES

- BROMMER, S., HARRAD, S., VAN DEN EEDE, N. & COVACI, A. 2012. Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. *Journal of Environmental Monitoring*, 14, 2482-2487.
- CATARINO, A. I., MACCHIA, V., SANDERSON, W. G., THOMPSON, R. C. & HENRY, T. B. 2018. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. *Environmental Pollution*, 237, 675-684.
- EERKES-MEDRANO, D., THOMPSON, R. C. & ALDRIDGE, D. C. 2015. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. *Water research*, **75**, **63**-82.
- HIDALGO-RUZ, V., GUTOW, L., THOMPSON, R. C. & THIEL, M. 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. *Environmental science & technology*, 46, 3060-3075.
- HORTON, A. A., CROSS, R. K., READ, D. S., JÜRGENS, M. D., BALL, H. L., SVENDSEN, C., VOLLERTSEN, J. & JOHNSON, A. C. 2021. Semi-automated analysis of microplastics in complex wastewater samples. *Environmental Pollution*, 268, 115841.
- NEL, H. A., CHETWYND, A. J., KELLEHER, L., LYNCH, I., MANSFIELD, I., MARGENAT, H., ONOJA, S., OPPENHEIMER, P. G., SMITH, G. H. S. & KRAUSE, S. 2021. Detection limits are central to improve reporting standards when using Nile red for microplastic quantification. *Chemosphere*, 263, 127953.
- NEL, H. A., SAMBROOK SMITH, G. H., HARMER, R., SYKES, R., SCHNEIDEWIND, U., LYNCH, I. & KRAUSE, S. 2020. Citizen science reveals microplastic hotspots within tidal estuaries and the remote Scilly Islands, United Kingdom. *Marine Pollution Bulletin*, 161, 111776.
- NOR, N. H. M. & OBBARD, J. P. 2014. Microplastics in Singapore's coastal mangrove ecosystems. *Marine pollution bulletin*, 79, 278-283.
- ONOJA, S., NEL, H. A., ABDALLAH, M. A.-E. & HARRAD, S. 2022. Microplastics in freshwater sediments: Analytical methods, temporal trends, and risk of associated organophosphate esters as exemplar plastics additives. *Environmental Research*, 203, 111830.
- WEN, X., DU, C., XU, P., ZENG, G., HUANG, D., YIN, L., YIN, Q., HU, L., WAN, J. & ZHANG, J.
 2018. Microplastic pollution in surface sediments of urban water areas in Changsha, China: abundance, composition, surface textures. *Marine pollution bulletin*, 136, 414-423.
- YIN, H., LIU, L., LIU, Q., SONG, J., FANG, S. & LIU, X. 2022. Levels and Distribution of Organophosphate Esters (OPEs) in Typical Megacity Wetland Park Landscape Water Bodies in Southwest China. Archives of Environmental Contamination and Toxicology, 82, 11-20.
- YUAN, W., LIU, X., WANG, W., DI, M. & WANG, J. 2019. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. *Ecotoxicology and Environmental Safety*, 170, 180-187.